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Abstract 

Previous studies have found correlation between the overall quality of a college football program's recruiting class and its 

performance on the field.  These studies use as their measurement of a program's recruiting class either the total “points” accrued 

by the class, or the numbers of players in the class with various “star” ratings.  In this paper, we study mechanisms used by 

247Sports.com to produce these two measurements.   

First, we examine variants of the formula used by 247Sports.com that estimates the quality of a recruiting class by computing a 

weighted sum of the ratings of its members.  We find that using a weight function with smaller spread parameter, that takes much 

less information about the class into account, predicts team success for major college programs from 2016 to 2019 as well as, if 

not better than, the 247Sports.com approach.   

Second, we search for the most effective thresholds for classifying players into “star”-like categories, finding that an optimal 

description of  “blue chip” recruits is narrower than the one currently used.  Furthermore, we find that dividing players into three 

different “star”-like classes does not produce a model that is substantively more predictive of team success than using only two 

such groups. 

 

Keywords: ordinary least-squares regression, college football recruiting, star ratings  

 

1 Introduction 

College football teams across the United States compete not only on the field, but in recruiting—trying to convince the best high 

school players to join their program.  The players who choose to attend a given school in a given year are called that school's 

recruiting class.  It is commonly believed that the better a program's recruiting class is, the better its team will perform in 

subsequent years.  As such, teams spend substantial resources (money and time) on scouting and recruiting players, and team 

recruiting activity is monitored closely by fans of the program.   

247Sports.com (henceforth referred to as 247) is a website owned by CBS Sports that gathers and reports information on which 

schools players are interested in attending.  They also rate prospective players’ abilities; in particular, they record for each recruit 

a “composite player rating”, which is an average of a numerical score assigned to that recruit from three services:  ESPN, Rivals 

and 247.  That average score is scaled so that it ranges from .7 and 1, with 1 being the highest rating. 

Based on this composite player rating, 247 assigns to each recruit a “star rating”.  247 calls any player whose composite rating is 

at least .9830 a 5  (five-star) player; a player whose rating ranges from .8900 to .9829 is called a 4  player; a player whose rating 

http://247sports.com/
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ranges from .7970 to .8899 is a 3 player, and lower-rated players are 2 players.  Four and five-star players are collectively 

called blue chip recruits; it is widely believed that signing blue chip recruits is key to success in college football1. 

247 takes these ratings of individual players and uses those ratings to create two measurements of the overall quality of a school's 

recruiting class.  One, called AVG, is simply the average rating of each player in a school's recruiting class (multiplied by 100).  

The second, which 247 calls “Points” and which we refer to as PTS, is the default measurement used by 247 to rank recruiting 

classes on its website.  PTS is a weighted sum of the rankings of the individuals comprising a school's recruiting class, and is 

computed via the following algorithm: 

Suppose a recruiting class consists of N players, whose composite ratings are P1, P2, …, PN, where P1 ≥ P2 ≥ … ≥ PN.  Setting Pn 

= .7 for all n > N finishes the construction of a decreasing sequence {Pn} of numbers between .7 and 1 corresponding to each 

class, where only finitely many numbers in the sequence are greater than .7.  Next, let w(m,b,x) be the density function of a normal 

r.v. with mean m and standard deviation b, but normalized so that the function has maximum value 1.  In other words, 

𝑤(𝑚, 𝑏, 𝑥) = exp (
−(𝑥 − 𝑚)2

2𝑏2
). 

247 uses m = 1 and a slightly different value of b each year, based on the total number of recruits signed by college programs in 

that year.  However, no matter the year, b tends to be very close to 9.  Using the function w(x) to weight the recruit rankings P1, 

P2, …, produces PTS.  Formally:   

𝑃𝑇𝑆 =  ∑ 𝑤(1, 𝑏, 𝑥)100 (𝑃𝑥 − .7)

𝑥

. 

Thus PTS is a single data point which attempts to measure the overall quality of a team's recruiting class.  While previous studies 

(Langelett, 2003; Herda et al. 2009; Maxcy 2013; Mankin et al. 2021) have measured the correlation between PTS (or similar 

measurements) and a team's quality, none that we are aware of actually study how effective the mechanism producing PTS from 

individual player ratings is at combining those ratings into an overall measurement of a recruiting class’ quality.  In fact, while 

247 touts its formula as “... ensuring that all commits contribute at least some value to the team’s score without heavily rewarding 

teams that have several more commitments than others”2, they provide no justification as to why the weight function w is chosen 

to be Gaussian, or why the mean parameter m is chosen to have value 1, or why it is important that all recruits add value to a 

class’ overall rating.  Similarly, while past work (Bergman and Logan 2016, Dronyk-Trosper and Stitzel 2017) investigates the 

impact of individual players to team success based on the number of players signed with each star rating, we are aware of no 

analysis as to whether or not the ranges of player rating chosen for each star rating are preferable to other ranges, in terms of 

producing a statistic that would best correlate with team success.  (247 claims3 that 5  players are those that are the equivalent of a 

first-round pick in the National Football League (NFL) draft, and that 4 players are those that are likely to be drafted by an NFL 

team.  However, past work (Wheeler 2018) indicates no major correlation between recruit ratings and NFL success.) 

This paper is concerned with two questions:  first, would different choices of parameters m and/or b in the weight function w 

produce an aggregate class score that is more strongly correlated with team performance on the field than PTS?   Do the 

parameters that optimize this correlation support 247’s position that every player needs to substantially contribute to the rating of 

a class?  Second, would different quantitative thresholds for dividing players into categories analogous to 5 , 4 , etc. would 

produce counts of recruits in these ranges that better predict the success of the team?  In other words, should more, or less, recruits 

be considered “blue chip” than are currently?  Also, how many different categories (akin to star classifications) are needed to 

produce an effective method for predicting team success? 

 

2 Literature review  

This century, research into the effects of successful recruiting on team performance has become a topic of interest, due to both the 

increased media exposure and popularity of major college sports and a significant rise in the amount of publicly available data on 

both recruit quality and team performance. 

 
1 See, for example, the articles “This time, with emphasis:  Of course recruiting rankings matter” by Chris Hummer, published by 

247Sports.com on February 4, 2018, and “Blue-Chip Ratio 2020:  The 15 teams who can win a national title” by Bud Elliott, 

published on 247Sports.com on June 11, 2020. 
2 See, for example, the Team Ranking Explanation at https://247sports.com/Season/2020-Football/CompositeTeamRankings/ 
3 See https://247sports.com/college/georgia/LongFormArticle/Georgia-Bulldogs-Recruiting-Everything-you-need-to-know-about-

247Sports-Rating-Process-143324123/ 

https://247sports.com/Article/Why-college-football-recruiting-rankings-matter-114611388/
https://247sports.com/LongFormArticle/Blue-chip-ratio-college-football-2020-Bud-Elliott-15-teams-who-can-win-a-national-title-148079661/
https://247sports.com/Season/2020-Football/CompositeTeamRankings/
https://247sports.com/college/georgia/LongFormArticle/Georgia-Bulldogs-Recruiting-Everything-you-need-to-know-about-247Sports-Rating-Process-143324123/
https://247sports.com/college/georgia/LongFormArticle/Georgia-Bulldogs-Recruiting-Everything-you-need-to-know-about-247Sports-Rating-Process-143324123/
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Langelett (2003) examined the effects of recruiting classes ranked in the top 10 according to Allen Wallace and Tom Lemming on 

a team’s final ranking in polls conducted by the Associated Press and USA Today, finding evidence suggesting that improved 

recruiting does impact team performance in subsequent years.  Langelett also found that schools that do well in a given year tend 

to have stronger recruiting classes in the following years. 

Dumond, Lynch and Platania (2008) studied the supply and demand of college football recruits, focusing on the decision-making 

process utilized by recruits when selecting their school.  Like Langelett, they found a positive relationship between recruit quality 

and on-field success.   

Herda et al. (2009) studied the relationship between the total Rivals and Scout (Scout was purchased by 247 in 2017) points 

rankings of all Division I college football teams from 2002 to 2006 and the subsequent Sagarin ratings of those teams.  They 

found that total points rankings from Rivals and Scout estimated up to 45% of the variance in a teams’ Sagarin rating and the 

number of games that team wins.  Later work of Maxcy (2013) and Mankin, Rivas and Jewell (2021) also found that recruiting 

class rankings had a significant and positive effect on team performance.   

Bergman and Logan (2016) performed a similar analysis as Herda et al., but controlled for school-specific effects.  They found 

that controlling for between-school heterogeneity lowered the effect of recruit quality, but that the remaining effect was still 

significant.  

In a 2015 paper, Dronyk-Trosper and Stitzel (2017) used a two-stage least squares approach to study the effect of recruiting on 

team success.  By including new control variables, they found evidence that the benefits of recruiting are driven by team-specific 

effects, reinforcing the findings of Bergman and Logan.  

In all this work, however, the metric used for evaluating the strength of a class was either the aggregate rating of the class, or the 

star ratings of recruits in the class.  We were unable to find prior work which actually examines the procedure by which 247 

combines the ratings of individual players into an overall class rating, or the cutoffs used by 247 to partition recruits into the 

various star ratings.  It is these mechanisms that we investigate. 

 

3 Data  

First, we define the set of major college football programs to be the set of those playing in the Atlantic Coast Conference (ACC), 

Big Ten, Big 12, Pac-12, or Southeastern Conference (SEC), together with Notre Dame, who competes as an independent.  All of 

these 65 programs are members of the NCAA's Division 1 Football Bowl Subdivision (FBS), and collectively have won every 

College Football Playoff national championship contested.  There is also a substantive difference in the quality of recruits signed 

by these programs and the recruits signed by other Division 1 programs (see, for example, Table 2 in (Bergman and Logan, 

2016)). 

We gathered both the composite rating and the star rating of each individual recruit in the classes of major college programs from 

2016 to 2019 from 247Sports.com.  We also recorded 247’s weighted average PTS, and the number of recruits of each star rating 

in each class, for each major college program between 2016 and 2019. 

We pulled the end-of-season Sagarin ratings for major college football teams from 2016 to 2019, which we denote as SAG, from 

Jeff Sagarin's web page (hosted on the USA Today website).  These ratings were chosen as our primary method of assessing the 

quality of college football teams for a few reasons: first, Sagarin ratings include all Division 1 college football teams (not just the 

top 25 teams like traditional human polls like those conducted by the Associated Press and ESPN).  Second, previous research 

(Herda, 2009) shows recruiting rankings to be most strongly correlated with Sagarin ratings (as opposed to winning percentage, 

number of wins, etc., which are greatly influenced by the difficulty of a team's schedule).  That said, we also collected the number 

of games each major program won between 2016 and 2019 (denoted WINS) from ESPN's website, cross-checking against school 

media guides to ensure accuracy. 

Summary statistics for this data are given in Table 1.  For example, in 2019, the average composite player rating of a recruit who 

was a member of a major college team's recruiting class was .8752.  We also give, in Figure 1, the empirical distribution function 

of composite player ratings for all major college football recruits from 2016-19, with the various star classifications indicated; a 

histogram for the same data is provided in Figure 2.  
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 Mean Standard deviation 

247 Composite player rating   
     2016-2019 .8682 .0457 

     2019 .8752 .0415 

     2018 .8725 .0433 

     2017 .8633 .0473 

     2016 .8622 .0487 

# of 5  recruits per class 0.469 1.099 

# of 4  recruits per class 5.196 5.228 

# of 3  recruits per class 16.277 5.700 

# of 2  recruits per class 0.758 1.217 

Overall class rating PTS   

     2016-2019 217.121 40.809 

     2019 219.552 37.785 

     2018 221.304 39.280 

     2017 213.620 41.262 

     2016 211.989 43.429 

Sagarin rating SAG   

     2016-2019 77.288 10.853 

     2019 77.300 11.636 

     2018 77.363 9.396 

     2017 77.703 10.744 

     2016 76.786 11.708 

Annual wins 7.269 2.968 

Table 1:  Summary statistics. 

Data consists of all major college programs from 2016 to 2019. 

Total observations of composite player ratings:  5902.  

Annual observations of PTS and SAG:  65.  

 

Figure 1:  A graph of F, the empirical distribution function of composite player rating 

for players recruited by major college programs from 2016 to 2019.  In particular,  

𝐹(𝑥) =  
#(𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 ≤ 𝑥)

5902
 

2 , 3 , 4 and 5 players are indicated in orange, yellow, green and blue, 

respectively. 
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Figure 2:  A histogram for composite player rating for players recruited by major 

college programs from 2016 to 2019. 

 

4 Methodology 

4.1  Computing the rating of a class from ratings of individuals  

We first study three models (A, B and C) that use approaches based on the 247 scheme to compute an aggregate score for a team's 

recruiting class from the ratings of individual recruits. 

4.1.1 Model A 

 

In Model A, we seek the most predictive weight function w taken from the family with Gaussian curves whose maximum value 

occurs at x = 1.  Toward that end, recall 

𝑤(1, 𝑏, 𝑥) = exp (
−(𝑥 − 1)2

2𝑏2 ). 

Next, for a team whose recruiting class corresponds to the sequence P1, P2, P3, … as described in Section 1, define 

𝑃𝑇𝑆𝐴(𝑏) =  100 ∑ 𝑤(1, 𝑏, 𝑥)(𝑃𝑥 − .7).

𝑥

 

This PTSA(b) gives an analog of PTS for each team's recruiting class.  Next, we performed an ordinary least-squares (OLS) 

regression between PTSA(b) and Sagarin rating SAG in the immediate following season, defining RA(b) to be the Pearson product 

moment correlation coefficient between PTSA(b) and SAG.   

We used the computer algebra system Mathematica to numerically estimate the value bA* at which RA(b) is maximized:  in 

particular, we ran the FindMaximum[ ] command with seed values that are multiples of .001, taking the largest value of RA(b) so 

obtained and calling this value RA*.  We let bA* be the location of this maximum value and then computed the weighted average 

PTSA(bA*) for each class.  We then used the R statistical software to compute OLS regressions between PTSA(bA*) and SAG and 

between PTSA(bA*) and WINS, testing parameters for statistical significance.  

To provide some validation for our results, we also used 10-fold cross validation, repeated three times, to produce 30 different 

values of bA*, each coming from the procedure described above applied to 90% of the underlying data.  For each of these values, 

we built the corresponding OLS model between PTSA(bA*) and SAG and then measured the total root mean squared error (RMSE) 

obtained when testing our model on the remaining 10% of the data.  We also performed a data split, using the information from 

years 2016 to 2018 to find the optimal value bA* and then testing the corresponding OLS model on the 2019 data. 

Last, we briefly investigated two other families of one-parameter weight functions (exponential and “half-tent”), using 

methodology similar to what is described above to find the value of the family’s parameter the maximizes the correlation between 

PTS and SAG.  In particular, to study the exponential family, set 𝑤(𝜆, 𝑥) =  𝑒−𝜆𝑥 and define 
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𝑃𝑇𝑆(𝜆) =  100 ∑ 𝑤(𝜆, 𝑥)(𝑃𝑥 − .7).

𝑥

 

As before, we used Mathematica to estimate the value of  (denoted *) for which the correlation between PTS() and SAG is 

maximized.  For the half-tent family, we let 

𝑤(𝑡, 𝑥) =  {
1 −

𝑥

𝑡
   𝑥 ≤ 𝑡

0         else
, 

defined PTS(t) in the same way and located the value t* where the correlation between PTS(t) and SAG is maximized.  

4.1.2 Model B 

 

Here, our goal is to determine the best weight function w taken from the family of all Gaussian curves.  So, following the notation 

from before, we set  

𝑤(𝑚, 𝑏, 𝑥) = exp (
−(𝑥 − 𝑚)2

2𝑏2
) 

and then define 

𝑃𝑇𝑆𝐵(𝑚, 𝑏) =  100 ∑ 𝑤(𝑚, 𝑏, 𝑥)(𝑃𝑥 − .7).

𝑥

 

As before, we performed an OLS regression between PTSB(m,b) and SAG, defining RB(m,b) to be the correlation coefficient 

between PTSB(m,b) and SAG.   

Using the FindMaximum[ ] command in Mathematica with seed values taken from the lattice of points whose x- and y-coordinates 

are multiples of .001, we numerically estimated values mB* and bB* which maximize RB(m,b) and denoted this maximum value as 

RB*.  The weighted average PTSB(mB*,bB*) was computed for each recruiting class, and OLS regressions between PTSB(mB*, bB*) 

and SAG and between PTSB(mB*,bB*) and WINS were performed, testing parameters for statistical significance.  A 10-fold cross 

validation procedure akin to the one described in Model A was repeated in this setting, as was a data split between years 2016-18 

and 2019. 

Last, we investigated other families of weight functions (beta and “tent”) to find the value of those families’ parameters which 

maximize the correlation between PTS and SAG.  To study the beta family, we used weight functions of the form  

𝑤(𝛼, 𝛽, 𝑥) = 𝐶 𝑥𝛼−1(32 − 𝑥)𝛽−1 

where C is a constant depending on  and  chosen so that the maximum value4 of w(𝛼, 𝛽,x) is 1.  (We fixed the support of this 

function as the interval (0,32) because all recruiting classes studied had at most 31 members).  For the tent family, we used 

piecewise-linear functions which pass through (l,0), (m,1) and (r,0): 

𝑤(𝑙, 𝑚, 𝑟, 𝑥) =  {

𝑥−𝑙

𝑚−𝑙
                𝑙 ≤ 𝑥 ≤ 𝑚

1 −
𝑥−𝑚

𝑟−𝑚
    𝑚 ≤ 𝑥 ≤ 𝑟

0                   else

    . 

We again performed the same kind of analysis, searching for (*,*) in the beta family and (l*,m*,r*) in the tent family which 

maximize the correlation between PTS and SAG. 

4.1.3 Model C 

In this model, we adapt Model B by changing the floor of a recruit's ranking.  Let w(m,b,x) be as above, and let 𝑓 ∈ [.7,1].  Next, 

we define 

𝑃𝑇𝑆𝐶 (𝑓, 𝑚, 𝑏) =  100 ∑ 𝑤(𝑚, 𝑏, 𝑥)(max {𝑃𝑥 , 𝑓} − 𝑓).

𝑥

 

In this model, we take the ranking of any player whose rating is less than the “floor” f and reset it to f; then we compute the same 

weighted average as in Model B.  As before, we perform an OLS regression between PTSC(f,m,b) and SAG to calculate the 

 
4 Of course, if  or  are less than 1, then w(,,x) has no maximum value.  In practice, such choices of  and  do not lead to 

values of R(PTS,SAG) which are close to optimal, so we ignore them. 
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correlation coefficient RC(f,m,b).  Treating RC(f,m,b) as a function of m and b and as in Models A and B, we use Mathematica to 

estimate the maximum value RC*(f) of RC(f,m,b).  

4.2  Analysis of star categories 

Here, we investigate the efficacy of various cutoffs used to partition recruits into “star” ratings. 

4.2.1 Two-subset model  

In this model, we divide all recruits into two classes, which will be labelled “5◆” and “4◆”.  To do this, we let 𝑡5 ∈  [.7,1] and 

for each recruiting class, let N5(t5) be the number of players in that class whose composite rating is at least t5.  (We remark that 

since all individual player ratings are multiples of .0001, we need only consider values of t5 that are multiples of .0001.)   Then, let 

N4(t5) be the number of players in each class whose composite rating is less than t5.  An OLS regression was performed with the 

model 

𝑆𝐴𝐺 =  𝛽5 𝑁5(𝑡5) +  𝛽4 𝑁4(𝑡5) + 𝛽0  

and the correlation coefficient R(t5) for this model was computed as a function of t5.   

Setting t5* to be the value of t5 at which this correlation coefficient is maximized, we decree a 5◆ recruit to be a player whose 

composite rating is at least t5*, and a 4◆ recruit to be a player whose composite rating is less than t5*.  Least-squares regressions 

were then performed for SAG and WINS against N5(t5*) and N4(t5*), testing parameters for statistical significance.   

We repeated this analysis using 10-fold cross validation with three repetitions, measuring the total RMSE in our OLS model.  

Last, we repeated this procedure with only the data from years 2016-18, using the 2019 data as a test set. 

4.2.2 Three-subset model  

 

Here, we partition recruits into three classes.  Let 𝑡4, 𝑡5 ∈ [.7,1] be such that t4  ≤ t5, and then set, for each class, 

𝑁5(𝑡4, 𝑡5) = #(recruits with composite rating in [𝑡5, 1)); 

𝑁4(𝑡4, 𝑡5) = #(recruits with composite rating in [𝑡4, 𝑡5)); 

𝑁3(𝑡4, 𝑡5) = #(recruits with composite rating in [. 7, 𝑡4)). 

Then, we perform an OLS regression for the model 

𝑆𝐴𝐺 =  𝛽5𝑁5(𝑡4, 𝑡5) + 𝛽4𝑁4(𝑡4, 𝑡5) +  𝛽3𝑁3(𝑡4, 𝑡5) + 𝛽0 

(using both the entire data set and using 10-fold cross-validation with three repetitions) and compute the correlation coefficient 

R(t4, t5) for this model as a function of t4 and t5.    

Setting (t4*, t5*) to be the value of (t4, t5) at which this correlation coefficient is maximized, we define a 5 ♥ recruit to be a player 

whose composite rating is at least t5*, a 4 ♥ recruit to be a player whose composite rating is in [t4*, t5*) and a 3 ♥ recruit to be a 

player with a composite rating less than t4*.  Least-squares regressions were then performed for SAG and WINS against N5(t4*, 

t5*), N4(t4*, t5*) and N3(t4*, t5*), testing parameters for statistical significance. 

 

5 Results 

5.1  Model A 

When considering all major programs from 2016 to 2019 as a single data set, the value of b* yielding the strongest correlation 

between a Gaussian weighted sum of individual player rankings with mean parameter 1 and team Sagarin rating is bA* = 6.882.  

While this is quite a bit less than the parameter b ≈ 9 used by 247, the corresponding correlation RA* = .5871 is only slightly larger 

than the correlation .5818 obtained when b = 9.   

The values of bA* stay fairly consistent over the individual years studied, and the value of RA* increases somewhat from 2016 to 

2019.  These values of bA* for the entire sample are given in Table 2.  However, when considering the sample conference-by-

conference, the values of bA* and RA* vary greatly:  Like the 247 model, Model A finds that the correlation between recruiting 

class rating and Sagarin rating is substantially higher for teams in the SEC than it is for teams in other conferences.  
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   Model A Model B 

 N R(1,9) bA* RA* mB* bB* RB* 

All major programs        

     2016-2019 260 .5818 6.882 .5871 8.038 1.752 .6006 

     2019 65 .6830 7.350 .6860 6.410 0.248 .7032 

     2018 65 .5775 6.667 .5833 8.571 2.410 .5940 

     2017 65 .5386 6.367 .5536 7.415 0.247 .5770 

     2016 65 .5449 7.509 .5469 11.016 0.185 .5763 

ACC, 2016-2019 56 .4740 4.712 .5065 4.410 0.244 .5239 

Big 12, 2016-2019 40 .5344 0.426 .5736 1.318 0.257 .5736 

Big Ten, 2016-2019 56 .6164 7.032 .6221 7.011 0.184 .6415 

Pac-12, 2016-2019 48 .4615 4.666 .4924 4.014 0.183 .5312 

SEC, 2016-2019 56 .7483 9.645 .7488 10.273 0.243 .7814 

 
Table 2:  Approximate values of m and/or b in Models A and B which maximize the 

correlation between the weighted totals of recruiting classes and the Sagarin ratings of 

teams in that year. 

Table 3 shows regression coefficients for OLS analysis of SAG and PTSA(bA*), and between WINS and PTSA(bA*).  We estimate 

that a team’s Sagarin rating increases by .1902 per unit of increase in PTSA(bA*), and that a school wins .0440 more games per 

unit increase of PTSA(bA*).  These regression coefficients are larger than the ones obtained from the 247 model, and statistically 

significant at the .001 level.  In particular, our study estimates that PTSA(bA*) accounts for approximately 34.5% of the variance in 

a team’s Sagarin rating (a slight increase from the 31.9% estimated using the 247 model) and 24.6% of the variance in the number 

of games a team wins (the 247 model estimates 23.1% of this variance).  Furthermore, even when controlling for conference 

membership, the regression coefficients change only a small amount and remain statistically significant; see Table 4. 

X Y 𝛽1 N 𝑅2  

PTS SAG 
0.1501*** 

(0.01367) 
260 .3185 

PTSA(bA*) SAG 
0.1902*** 

(0.01633) 
260 .3446 

PTSB(mB*,bB*) SAG 
0.4250*** 

(0.03523) 
260 .3607 

PTS WINS 
0.0349*** 

(0.00397) 
260 .2309 

PTSA(bA*) WINS 
0.0440*** 

(0.00479) 
260 .2463 

PTSB(mB*,bB*) WINS 
0.0986*** 

(0.01037) 
260 .2595 

 

Table 3:  Regression results from six ordinary least-squares regression analyses, 

each fitting the equation 𝑌 =  𝛽0 +  𝛽1𝑋, where X and Y are as given in the first 

two columns of the chart.  PTS refers to the 247 weighted total “Points”; 

PTSA(bA*) and PTSB(mB*,bB*) are weighted totals using the ideal parameters 

found in Models A and B, respectively. 

Note:  Data is for all Power 5 conference teams for years 2016-2019.  Standard 

errors are in parentheses. 

*** p < 0.001 

  



An analysis of methods used to measure college football recruiting classes D. McClendon and M. Nadrowski 

Mathematics and Sports  2021|Volume 3|page 9 

   

 

X Y 𝛽1 𝛽𝐶𝑂𝑁𝐹 N 𝑅2  

PTS SAG 
0.1502*** 

(0.01425) 

-.1073 

(.41042) 
255 .3149 

PTSA(bA*) SAG 
0.1900*** 

(0.01695) 

-.0668 

(.40069) 
255 .3362 

PTSB(mB*,bB*) SAG 
0.4231*** 

(0.03647) 

-.0201 

(.39475) 
255 .3566 

PTS WINS 
0.0353*** 

(0.00411) 

-.0941 

(.11840) 
255 .2299 

PTSA(bA*) WINS 
0.0443*** 

(0.00494) 

-.0826 

(.11669) 
255 .2456 

PTSB(mB*,bB*) WINS 
0.0989*** 

(0.01066) 

-.0719 

(0.1154) 
255 .2574 

 

Table 4:  Regression results from six ordinary least-squares regression analyses, each 

fitting the equation 𝑌 =  𝛽0 + 𝛽1𝑋 + 𝛽𝐶𝑂𝑁𝐹𝐶𝑂𝑁𝐹, where X and Y are as given in the 

first two columns of the chart.  PTS, PTSA(bA*) and PTSB(mB*,bB*) are as in Table 3; 

CONF is a constant depending only on the team’s conference. 

Note:  Data is for all Power 5 conference teams, not including Notre Dame, for years 

2016-2019.  Standard errors are in parentheses. 

*** p < 0.001 

 

5.1.1 Cross-validation in Model A 

The 30 values of bA* obtained from our 10-fold cross validation analysis averaged 6.891, very close to the bA* obtained from the 

entire sample, and the standard deviation of these values of bA* was .0356.  The total root mean squared error (RMSE) was 

11.302, which is close to the standard deviation of team Sagarin rating absent any other analysis.   

5.1.2 Model A with split data  

When using the data from 2016 to 2018 as a test set, we found that the correlation between PTSA(bA) and SAG had a maximum 

value of RA* = .5572, occurring when bA* = 6.662.  Using the corresponding OLS model to project the Sagarin rating of 2019 

teams, we obtained a RMSE (root mean square error) in the estimate of 8.772, less than the standard deviation of 2019 team 

Sagarin rating without other analysis. 

5.1.3 Other one-parameter families  

For the exponential family of weight functions, we found the correlation between PTS() and SAG achieved its maximum value of 

.5776 when * = .1723.  For the half-tent family, the maximum correlation of .5892 was achieved when t* = 18.000.  Graphs of 

the optimal Gaussian, exponential and half-tent weight functions can be found in Figure 3 below.  Observe that the optimal half-

tent weight function is qualitatively similar to the optimal Gaussian weight function, but the optimal exponential function 

decreases more sharply. 

 
Figure 3:  Graphs of optimal weight functions for our mean 1 Gaussian, exponential 

and half-tent models.   The function w(1,b*,x) is shown in blue, w(*) is in red, and 

w(t*) is in green. 
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5.2  Model B   

When considering all major programs from 2016 to 2019 as a single data set, parameters m* = 8.038 and b* = 1.752 produce the 

strongest correlation between Gaussian weighted sum of individual player rankings and team Sagarin rating (see Table 2).   

There is substantial variance in the values mB* and bB* over the individual years we studied, and the value of RB* is fairly 

consistent from 2016 to 2018 before a sharp increase in 2019.  When considering schools only within individual conferences, 

however, the values of mB* and bB* vary greatly.   As with the 247 model and Model A, when applying Model B we find that the 

correlation between recruiting class rating and Sagarin rating is substantially higher for teams in the SEC than it is for teams in 

other conferences.   

Table 3 includes regression coefficients for OLS analysis of SAG and WINS against PTSB(mB*,bB*).  We estimate that a team’s 

Sagarin rating increases by .425 per unit of increase in PTSB(mB*,bB*), and that a school wins .0986 more games per unit increase 

of PTSB(mB*,bB*).  These regression coefficients are larger than those obtained in Model A, and statistically significant at the .001 

level.  We find that PTSB(mB*,bB*) accounts for 36.1% of the variance in a team’s Sagarin rating and 26.0% of the variance in the 

number of games that a team wins.  As with Model A, we find little change in these regression coefficients when conference 

membership is controlled for (see Table 4), and these coefficients remain significant at the .001 level. 

5.2.1 Cross-validation in Model B 

 

In our 10-fold cross-validation approach to Model B, we produced 30 values of (mB*, bB*) whose average value was 

(7.713,1.213).  The mB* so obtained had a standard deviation of .6606, and the bB* had a standard deviation of .9124.  Of note, the 

average values of mB* and bB* obtained here are quite different than the values obtained from the entire sample.  To explain why, 

we consider the behavior of the function RB(m,b).  As reported earlier, the absolute maximum value of this function is .6006, 

occurring at M1 = (8.038,1.752).  However, RB also possesses a local maximum value of .6004 at the point M2 = (7.010,0.182), as 

shown in Figure 4 below.  When performing cross-validation analysis, the values of (mB*, bB*) coming from each group of 9 folds 

clearly partition into two sets:  17 of the 30 values clustered around M1 and the other 13 which are all close to M2, as shown in 

Figure 5.  The 17 points closest to M1 have an average value of (8.234,1.960), which is relatively close to M1; the coordinate-wise 

standard deviation of these 17 points is (.3107,.3661), substantially lower than the standard deviation of the entire sample.  The 

other 13 points average (7.033,0.237) which is close to M2, and have a standard deviation of (.2009,.1061) which is quite smaller 

than that of the entire sample.  What seems to be happening here is that when one selects a subset of the entire sample, the 

corresponding function RB(m,b) generated by that subset has two local maxima, one near M1 and one near M2, which are very 

close in height.  Which of these points is the location of the global maximum is sensitive to the subset of the data that is sampled. 

The total RMSE from our 30 models was 8.802. 

5.2.2 Model B with split data 

 

When using the data from 2016 to 2018 as a test set, we found that the correlation between PTSB(bB) and SAG had a maximum 

value of RB* = .5749, occurring at (mB*, bB*) = (7.439,0.257) which is close to the point M2 discussed in the previous section.  

Using the corresponding OLS model to project 2019 teams’ Sagarin rating, we obtained a RMSE in the estimate of 9.352. 



An analysis of methods used to measure college football recruiting classes D. McClendon and M. Nadrowski 

Mathematics and Sports  2021|Volume 3|page 11 

   

 

Figure 4:  A contour plot for the function RB(m,b) that measures the correlation 

between PTSB(m,b) and SAG.  RB(m,b) has a global maximum value of .6006 at the 

point M1 = (8.038,1.752) and a local maximum value of .6004 at M2 = 

(7.010,0.182). 

 

Figure 5:  Each red X indicates one of the 30 values of (mB*, bB*) coming from our 

10-fold cross-validation approach in Model B. The green triangle at (7.713,1.213) is 

the average value of those 30 points. 

5.2.3 Other families   

 

For the beta family, we found the maximum correlation between PTS and SAG was .6007, occurring when * = 17.211 and * = 

51.6105.  For the tent family, the maximum correlation was .6012, occurring when l* = 5.280, m* = 6.205 and r* = 13.000. 

Graphs of the optimal Gaussian, beta and tent weight functions can be found in Figure 6; note the qualitative similarities between 

the three graphs. 
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Figure 6:  Graphs of optimal weight functions for our Gaussian (Model B), beta 

and tent models.   The function w(m*,b*,x) is shown in blue, w(*,*,x) is in red, 

and w(l*,m*,r*,x) is in green. 

 

5.3  Model C  

A graph of RC* is shown in Figure 7.  Of note, when f  ≤ .8, the value of R*(f) is virtually unchanged.  Also, the value of RC* 

remains at least 90% of RC*(.7), until the floor f is raised to over .935, and the rate of decrease of R* is quite small until f reaches 

approximately .94.   

 

Figure 7:  A graph of the function RC*, which gives the maximum correlation in 

Model C with the floor of a recruit’s ranking set equal to f.  The dashed lines 

indicate cutoffs used by 247 to classify players into star ratings. 

5.4  Two-subset model 

A graph of R2(t5) against t5 is given in Figure 8.  The correlation between a team’s Sagarin rating and its number of players in each 

group is maximized when t5* = .9184; the maximum value of R2(t5) is R2(t5*) = .3600.  Using t5* as a threshold between 5◆ and 

4◆ recruits, we see that 14.1% of all players recruited from 2016 to 2019 were 5◆ recruits; this is an average of 3.200 such 

players per class (Table 5 gives summary statistics for numbers of 5◆ and 4◆ recruits).   

Regression results for SAG and WINS against the number of 5◆ and 4◆ recruits in a class are given in Table 6.  We find that 

each additional 5◆ recruit increases a team’s Sagarin rating by 1.172 on the average, and produces .249 additional wins for that 

team on the average; these regression coefficients are significant at the .001 level.  Each additional 4◆ recruit, on the average, 

corresponds to a decrease in a team’s Sagarin rating by .348 and in its number of games won by .113; these regression coefficients 

are significant at the .001 and .1 levels, respectively. 

Of note, there exists negative correlation between the numbers of 5◆ and 4◆ recruits comprising a team’s class (R(5◆, 4◆) = -

.7619).  This is as expected, since recruiting more 5◆ recruits leaves less room for 4◆ recruits in the same class.  This correlation 

leads to a moderate variance inflation factor (VIF) in our model of 4.200.  However, we can account any multicollinearity by 

performing an OLS regression between SAG (or WINS) and the number of 5◆ recruits (omitting the number of 4◆ recruits).  

The results are shown in Table 7; in this model we estimate that each 5◆ recruit increases a team’s Sagarin rating by 1.455 and its 

number of games won by .3410.  These regression coefficients are significant at the .001 level. 
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Figure 8:  A graph of R2(t5), the square of the correlation coefficient of the OLS 

estimate of a team’s Sagarin rating from the number of recruits in a team’s class 

whose rating is at least t5 and the number of recruits in the class with rating less 

than t5. 

  Percentage  Standard 

 Number of of all Average deviation 

 recruits recruits per class per class 

5◆ recruits 832 14.10% 3.200 4.388 

4◆ recruits 5070 85.90% 19.500 4.825 

5♥ recruits 830 14.06% 3.192 4.381 

4♥ recruits 3590 60.83% 13.808 4.504 

3♥ recruits 1482 25.11% 5.700 4.918 

 

Table 5:  Summary statistics for the classifications using our ideal two-subset 

and three-subset models. 

Data consists of all major college programs from 2016 to 2019. 

Total observations of composite player ratings:  5902. 

 

Dependent variable SAG WINS 

intercept 80.3248*** 8.6717*** 

 (3.9015) (1.1375) 

5◆ recruits 1.1718*** 0.2493*** 

   (rating ∈ [.9184,1]) (0.1905) (0.0555) 

4◆ recruits -0.3480* -0.1128* 

   (rating ∈ [.7, .9184)) (0.1733) (0.0505) 

N 260 260 

R2 .3601 .2726 

 

Table 6:  Regression results for team Sagarin rating and number of wins against 

recruit quality, as characterized by our ideal two-subset model.  The VIF for both 

dependent variables is 4.200.   

* p < .1; ** p <  .01; *** p < .001. 

Dependent variable SAG WINS 

intercept 72.5812*** 6.1633*** 

 (0.6754) (0.196) 

5◆ recruits 1.4550*** 0.3410*** 

   (rating ∈ [.9184,1]) (0.1248) (0.03624) 

N 260 260 

R2 .3484 .2585 

 
Table 7:  Regression results for team Sagarin rating and number of wins against 

recruit quality, as characterized by number of 5◆ recruits.  

* p < .1; ** p <  .01; *** p < .001. 
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As a point of comparison, we include regression results for SAG and WINS against the number of blue chip (4  and 5 ) recruits 

and number of non-blue chip recruits per class in Table 8.  The regression coefficients corresponding to the number of recruits in 

the “top” group in our ideal two-subset model are substantively larger than those coming from the 247 classification.  Also, the R2 

value for SAG in the ideal two-subset model is about 9% greater than the R2 from the 247 approach. 

Dependent variable SAG WINS 

intercept 79.4728*** 8.4620*** 

 (3.9864) (1.1557) 

blue chip recruits 0.7144*** 0.13952** 

   (rating ∈ [.89,1]) (0.1810) (0.0525) 

non-blue chip recruits -0.3659* -0.1164* 

   (rating ∈ [.7, .89)) (0.1781) (0.0516) 

N 260 260 

R2 .3299 .2468 

 

Table 8:  Regression results for team Sagarin rating and number of wins against 

recruit quality, as characterized by whether or not the player is blue chip (where 

“blue chip” means having 247 star rating of 4  or 5 ). 

* p < .1; ** p < .01; *** p < .001. 

Our cross-validation analysis yielded similar data as that coming from the entire sample:  the 30 values of t5* obtained averaged 

.9173 and had standard deviation 0.002; the corresponding maximum values of R2(t5*) averaged .3614 with a standard deviation 

of .0157.  Our values of 𝛽5 (the regression coefficient for the number of 5◆ recruits) averaged 1.1787 and had standard deviation 

.1320, and our 30 values of 𝛽4 (the regression coefficient for the number of 4◆ recruits) had mean -0.2880 with standard 

deviation 0.0673.  The total RMSE for the Sagarin ratings estimated by our model was 9.814. 

When using only the data from 2016 to 2018, we obtained t5* = .9184 (the same as for the entire sample) and R2(t5*)  = .3487, 

leading to the model  

SAG = 84.8082 + 0.8777 (# 5◆ recruits) – 0.5277 (# 4◆ recruits). 

Here, the intercept and the regression coefficient on the number of 5◆ recruits were significant at the .001 level, and the 

coefficient on the number of 4◆ recruits was significant at the .01 level.  However, these regression parameters are quite different 

than those we obtained when looking at the entire data set or at the random folds in our cross-validation analysis, and this model 

produced a RMSE of 9.182 when tested on the 2019 data.   

5.5  Three-subset model 

A graph and contour plot of R2(t4,t5) can be seen in Figure 9.  We found that the correlation between SAG and the number of 

players in each category is maximized when t4 * = .8401 and t5* = .9185.  Using t4 and t5 as thresholds between 3♥, 4♥ and 5♥ 

recruits, we see that 14.06% of all players recruited from 2016 to 2019 were 5♥ recruits (averaging 3.192 such players per class) 

and 60.83% of players recruited in that time frame were 4♥ recruits (averaging 13.808 such players per class).  Summary statistics 

for these counts are available in Table 5. 

Regression results for SAG and WINS against the number of 5♥, 4♥ and 3♥ recruits in a class are given in Table 9.  We found that 

each additional 5♥ recruit increases a team’s Sagarin rating by 1.064 on the average and produces .225 additional wins for that 

team on the average; these regression coefficients are significant at the .001 level.  Each additional 3♥ recruit, on the average, 

decreases a team's Sagarin rating by .588 and its number of games won by .168; these regression coefficients are significant at the 

.01 and .1 levels, respectively.  Note that the regression coefficients corresponding to the number of 4♥ recruits were not 

significant at the .1 level. 

Similar to our two-subset model, there is negative correlation between the dependent variables which count 5♥, 4♥ and 3♥ 
recruits.  In particular, R(5♥, 4♥) = -.2224, R(5♥, 3♥) = -.5437 and R(4♥, 3♥) = -.4783.  This leads to the variance inflation factors 

ranging from 2 to 3 given in Table 9.   

For comparison, in Table 10 we give regression analysis for SAG and WINS against counts of recruits in each star category. Of 

note, our ideal two-subset and three-subset models produce larger values for R2 than the four-subset model (the subsets being 5 , 

4 , 3  and 2 ) utilized by 247. 

 



An analysis of methods used to measure college football recruiting classes D. McClendon and M. Nadrowski 

Mathematics and Sports  2021|Volume 3|page 15 

   

 

 

 

Figure 9:  A graph and contour plot for the function R2(t4, t5) used in the three-

subset model.  The maximum value of R2 occurs when the cutoff between 3♥ 

and 4♥ players is t4* = .8401, and the threshold between 4♥ and 5♥ players is t5* 

= .9185.  This maximum value is R2(.8401, .9185) = .3807. 

 

Dependent variable SAG WINS 

intercept 79.8616*** 8.5658*** 

 (3.8459) (1.1289) 

5♥ recruits 1.0640*** 0.2251*** 

   (rating ∈ [.9185,1]) (0.1920) 

VIF = 2.479 

(0.0564) 

4♥ recruits -0.1898 -0.0771 

   (rating ∈ [.8401, .9185)) (0.1785) 

VIF = 2.271 

(0.0524) 

3♥ recruits -0.5877** -0.1667* 

   (rating ∈ [.7, .8401)) (0.1899) 

VIF = 3.030 

(0.0557) 

N 260 260 

R2 .3809 .2867 

 

Table 9:  Regression results for team Sagarin rating and number of wins against 

recruit quality, as characterized by our ideal three-subset model.  (VIF stands for 
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variance inflation factor.) 

* p < .1; ** p < .01; *** p < .001. 

Dependent variable SAG WINS 

intercept 78.7860*** 8.3174*** 

 (3.9574) (1.1550) 

5  recruits 2.1226** 0.4739* 

   (rating ∈ [.983,1]) (0.6544) (0.1910) 

4  recruits 0.5358** 0.0988* 

   (rating ∈ [.89, .983)) (0.1943) (0.0567) 

3 recruits -0.2755 -0.1009* 

   (rating ∈ [.797, .89)) (0.1802) (0.0526) 

2 recruits -1.0471* -0.1869* 

   (rating ∈ [.7, .797)) (0.4889) (0.1427) 

N 260 260 

R2 .3477 .2570 

 

Table 10:  Regression results for team Sagarin rating and number of wins against 

recruit quality, as characterized by 247 star rating. 

* p < .1; ** p < .01; *** p < .001. 

Our cross-validation analysis in the three-subset model yielded similar results as the entire sample.  The 30 values of (t4*, t5*) 

obtained had mean (.8402, .9176) and standard deviation (.0002, .0018); the corresponding maximum values of R2(t4*, t5*) 

averaged .3823 and had standard deviation .0171.  Values of 𝛽5 (𝛽𝑗 being the regression coefficient for the number of j♥ recruits 

in a class) had mean 1.0508 and standard deviation 0.0650; the 30 values of 𝛽4 averaged -0.1958 with standard deviation 0.0654 

and the values of 𝛽3 had mean -0.5897 and standard deviation 0.0769. The total RMSE from the 30 folds studied was 8.7486. 

When using only data from 2016 to 2018, we obtained (t4*, t5*) = (.8179, .9183) and R2(t4*, t5*) = .3813, leading to the model  

SAG = 84.6933 + 0.7759 (# 5♥ rec.) – 0.4083 (# 4♥ rec.) – 1.1519 (# 3♥ rec.). 

The intercept and the coefficients on counts of 5♥ and 3♥ recruits were significant at the .001 level; the coefficient on the count of 

4♥ recruits was significant at the .1 level.  Applying this model to the data from 2019 produced a total RMSE of 9.386. 

 

6 Analysis 

6.1  Models A, B and C 

In Model A, we find that by changing only the spread parameter b, so long as 𝑏 ∈ [1, 20], the correlation between the 

corresponding weighted average PTSA(b) and SAG always remains between .52 and its maximum value RA* = .5871.  

Furthermore, for 𝑏 ∈ [2.4, 12.5], RA(b) is more than 95% of RA*.  This suggests that when constructing weighted sums of 

individual player ratings using a Gaussian weight function with mean 1, the choice of spread parameter does not greatly influence 

the degree to which the weighted sum PTSA(b) correlates with team success.    

Likewise, in Model B, we find that when using a Gaussian weight function with arbitrary mean and standard deviation to compute 

PTSB(m,b), we find that any choice of (𝑚, 𝑏) ∈ [0, 10] × [.1, 10] leads to correlation values between .52 and the maximum value 

RB* = .6006.  This indicates that the choice of the parameters m and b in this procedure do not wildly affect how strongly 

PTSB(m,b) correlates with a team's Sagarin rating. 

Furthermore, we found that optimal weight functions taken from other families produced values of RA* close to those coming 

from Gaussian families, suggesting that there is nothing special about using Gaussian weight functions as opposed to weights 

taken from other families. 

However, what stands out in Model B is that the optimal value of the spread parameter bB* is much smaller than the 

corresponding parameter in either the 247 approach or Model A.  This means that when using Model B, a much smaller amount of 

information (i.e. the ratings of a far smaller number of recruits) substantively contribute to the overall class rating.  To measure 

this distribution more quantitatively, recall that  

𝑤(𝑚, 𝑏, 𝑥) = exp (
−(𝑥 − 𝑚)2

2𝑏2
) 
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and set 

𝐹247(𝑛) =  
∑ 𝑤(1,9, 𝑥)𝑛

𝑥=1

∑ 𝑤(1,9, 𝑥)∞
𝑥=1

;   𝐹𝐴(𝑛) =  
∑ 𝑤(1, 𝑏𝐴

∗, 𝑥)𝑛
𝑥=1

∑ 𝑤(1, 𝑏𝐴
∗, 𝑥)∞

𝑥=1

;   𝐹𝐵(𝑛) =  
∑ 𝑤(𝑚𝐵

∗ , 𝑏𝐵
∗ , 𝑥)𝑛

𝑥=1

∑ 𝑤(𝑚𝐵
∗ , 𝑏𝐵

∗ , 𝑥)∞
𝑥=1

. 

The functions F247, FA and FB therefore give the cumulative contribution to the total class rating coming from recruits who are 

among the n highest rated recruits in that class, according to the model used by 247, Model A and Model B, respectively.  Graphs 

of F247, FA and FB can be found in Figure 10.   

 

Figure 10:  Cumulative contribution to overall class rating coming from a team’s 

top n recruits, using the 247 weight function and our weight functions w(1,bA*,x) 

and w(mB*,bB*,x) from Models A and B. 

We observe that Model B gives substantial weight to far fewer players than the 247 model.  Indeed, the values of Pn for 𝑛 ∈
{5,6, … ,12} (i.e. the ratings of the 5th to the 12th best player in each class) contribute 97.5% of the overall class ranking when using 

the weight function w(mB*,bB*,x) but only 47.6% of the overall class ranking using weight function w(1,9,x) and only 48.8% of 

the overall class ranking in Model A.  Furthermore, in Model B, players who are not among the 12 highest-rated recruits in a class 

collectively contribute only 0.5% of the overall class ranking.  Yet, despite not taking these players into account very much, 

Model B is slightly more strongly correlated with team success than the 247 scheme.  So it seems as though the assumption made 

by 247 that it is important to have all recruits contribute substantially to a team’s overall ranking is incorrect, at least in terms of 

predicting team performance. 

We conjecture three possible reasons for this.  First, the rankings of the 5th to 12th best players in each class are likely to be 

strongly correlated with the rankings of the other players making up a recruiting class, so the ratings of other players provide 

essentially redundant information.  Second, the evaluation process may take more time to judge the relative quality of the highest-

rated recruits, and as such, these players’ ratings may, in general, be more precise than those of lower-rated recruits.  Third, 

players who make up the bottom half of a team’s recruiting class may not be as likely to be significant contributors to a team (they 

may spend their career as reserves, backing up more talented recruits), so they have less impact on team success. 

Our analysis of Model C similarly suggests that the ratings of top-rated players are substantially more important than the ratings of 

lesser-rated players in trying to predict team success from recruiting rankings alone.  In particular, if we use a floor of f  = .8 for a 

recruit's rating (rather than the .7 used by 247), the corresponding Gaussian weighted total would be almost equally correlated 

with team success as one that takes into account the particular ratings of recruits whose composite rating is less than .8.  We 

believe this is for two reasons:  first, few players (only 3.75% of the sample; see Figure 1) with a rating of less than .8 were signed 

by major programs from 2016 to 2019.  Second, zero players with a rating of less than .8 were among the 12 best players in any 

class studied, meaning that players with a ranking of less than .8 barely contributed to the overall class rating produced by Model 

B.   

However, Model C shows that even if we were to use a floor f such that many players in the top 12 of their class had a rating less 

than f the predictive value of the corresponding weighted total is still almost what it is when f  = .7.  For example, if we set f  = .89 

(the threshold used by 247 to distinguish 3  and 4  players), the corresponding value RC(.89) = .5870 is still 97.7% of RB* = 

.6006.  Put another way, we find that without actually assigning individual ratings to any 3  or 2  players, one could obtain a 

model predicting team success that is 97.7% as effective as one that distinguishes such recruits.   

Even further still, the value RC(f) only drops to less than 90% of its maximum value once f  ≥ .96.  As only 5.61% of players in our 

sample have a rating of greater than .96, this means one could obtain a model predicting team success from only the ratings of the 

top 5.61% of recruits that is 90% as correlated with team success as a similar model accounting for the ratings of all recruits.  This 
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suggests that the efficacy of recruiting data in predicting team success comes mostly from observing what schools land a small 

subset comprising the most elite recruits. 

6.2  Two-subset and three-subset models 

We find that the choice of parameters (t4 and t5 here) often does not substantially impact the correlation between counts of recruits 

in each category and team success.  For instance, in the two-subset model, we found that for 𝑡5 ∈ [. 889, .934], the corresponding 

value of R2 remained within 90% of its maximum value; this includes t5  = .89 which is currently used by 247 to separate players 

into blue chip and non-blue chip categories.  Nonetheless, our work suggests that recruits are best divided into two categories by 

using a higher rating, .9184, as the threshold between “blue chip” and “non-blue chip”.  This would place all 5  recruits and 

67.1% of 4  recruits in the higher 5◆ category, and the remaining 32.9% of 4  players together with all 3  and 2  players in the 

lower 4◆ category.  In particular, our analysis suggests that the top 2/3 of 4  players have a similar value to their team as a 5  
recruit.  This supports the findings of Bergman and Logan (2016), where the authors suggest that the impact of a 4  recruit is 

similar to that of a 5  recruit once fixed effects are accounted for. 

Of note, we find in the three-subset model that our optimal value of t5, .9185, is almost the same as the optimal value t5* coming 

from the two-subset model (.9184).  So our ideal three-subset model essentially partitions the 4◆ players from our ideal two-

subset model into two groups:  4♥ and 3♥.  Doing this generates a more predictive model, but only increases R2 by about 5.78% 

from the R2 from our two-subset model.  So, mirroring what we find in Models A, B and C, we see that taking the time to more 

finely rate less regarded players is a task that produces only a small increase in predictive value.  We suspect that considering a 

model with more subsets would continue to increase the corresponding R2 value so obtained, but at a smaller and smaller rate, but 

did not pursue that analysis here.   

6.3  Limitations on our study and further questions 

6.3.1 Choices of metrics for recruit and team quality 

 

In this paper we use players’ composite ratings as independent variables.  It is unclear as to the degree that said rating is actually a 

measure of the player’s quality.  For instance, scouts ostensibly evaluate players based on raw athletic measurements (40-yard 

dash times, shuttle times, bench press, etc.), by analysis of high school game film, by observing the player at camps, and even by 

investigating the player’s academic accomplishments and character.5  But it is not clear that different scouts have access to the 

same information or give these factors the same weight in their evaluation.  Recruit ratings seem also not to be normalized across 

multiple years; as shown in our Table 1, the mean player rating of a major college recruit steadily increased from 2016 to 2019.  

Our work also does not account for “hidden gems” (Peng et al., 2018; Beckwith et al., 2019), that is, players who have lesser star 

ratings but have other attributes which may make them more likely to outperform peers with a similar rating. 

Some also believe that players’ ratings are inflated when they are offered and/or accept scholarships at programs having high 

profiles or that have a long history of fielding successful teams.  One such hypothesis, called the “Bama bump” (Connelly, 2016), 

asserts that players who commit to Alabama receive a boost in their ratings.  While to our knowledge this phenomenon has not 

been rigorously studied, if true it would raise the issue of whether ratings of recruits are independent estimates of a player’s ability 

or simply a measurement of the degree to which that player is in demand by prominent college football programs.   

Pro Football Focus (PFF) gives grades6 to college players based on their performance during each play.  The correlation between 

recruit rating and PFF grade is stronger for the highest-rated recruits (Beckwith et al., 2019), which makes sense given our 

findings that the highest-rated recruits are most strongly correlated with team quality.  As such, it might be interesting to pursue 

how to predict team success using a weighted formula of the PFF grades of its members.  However, PFF grades are not germane 

to our study, as we are interested in the relationship between ratings players receive before they play college football and their 

team’s success (PFF grades do not exist for high school players). 

In this paper we use Sagarin rating and number of wins as proxies for team quality (our dependent variable).  Neither of these 

ratings account for the quality of coaching a player receives once he joins a college team, the facilities available to players, the 

budget of the team, etc.  Nor do they account for injuries or lucky/unlucky breaks during games that are independent of whether 

the team is “good”.  We believe these issues are a major reason why none of our R2 values exceed .4.  While it is not the goal of 

our paper to produce a comprehensive model that most accurately predicts team success, it would be interesting to see how 

recruiting data based on our weighting schemes and/or classification into ◆ and/or ♥ categories could be incorporated into a more 

complex model trying to accurately predict team success, as in Bergman and Logan (2016) or Dronyk-Trosper and Stitzel (2017). 

 
5 See, for example, the article “A Scout’s Take on How College Football Recruits are Evaluated” by Edwin Weathersby, 

published online by Bleacher Report on March 26, 2013. 
6 See http://pff.com/grades for a description of the methodology used by Pro Football Focus. 

https://bleacherreport.com/articles/1582239-a-scouts-take-on-how-college-football-recruits-are-evaluated
http://pff.com/grades
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6.3.2 Possible synergies 

 

We do not take into account possible synergies from combining top-level recruits at particular positions, nor are we taking into 

account the fact that a player’s value may be different from one school to another.  For instance, if Program X already has an 

outstanding quarterback, a highly-rated quarterback in the following class might not be as useful to Program X as he would be to 

Program Y that has no returning highly-rated quarterback.   

Also, we do not factor in possible amplification that could take place when top-level recruits at particular positions are combined.  

Does, for example, the impact of a highly-rated quarterback increase when he is paired with a highly-rated wide receiver?  We 

considered this question briefly during our study but found such synergies difficult to find, in part because programs that recruit 

well tended to recruit well at every position.   

6.3.3 Other models   

We limit ourselves to weighting schemes where the weighted player ratings are added.  It might be interesting to consider 

formulas which multiply player ratings together (Tofallis 2014) or to use other weighting schemes for rank-ordered data (Barron 

and Barrett, 1996; Roszkowska 2013). Additionally, we consider only players’ composite rating and do not separately consider 

their ratings from each of the three major services 247, ESPN and Rivals.  It might be interesting to generalize our work by 

allowing the rating a player receives from each service as an independent variable. 

6.3.4 Lagged effects 

In our model, we only study the correlation between recruiting ratings and the Sagarin rating of a team in the immediate following 

season (i.e. the freshman year of the class studied).  We ignore lagged effects, i.e. the impact a player recruited in year 2016 may 

or may not have on the Sagarin rating of his team in 2017 or 2018, and it is reasonable to ask if considering lagged effects might 

impact our analysis.  However, Langelett (2003) found that the greatest impact of a recruiting class is in its freshman year (with 

discounted effects thereafter), and Bergman and Logan (2016) also found that lagged effects were small.   

 

7 Conclusion 

Our goal was to study the efficacy of two mechanisms in predicting college football team success:  one used to convert the 

composite ratings of individual players into a metric evaluating the overall strength of a recruiting class, and one used to classify 

players into groups based on their individual rating. 

As with previous studies, we find utility in the first mechanism, in that there exists positive correlation between Gaussian 

weighted sums of individual player ratings in a team's recruiting class and the performance of the team on the field.  However, we 

find that these weighted sums are computed by a formula that takes into account an unnecessary amount of information.  We 

argue that by using a Gaussian weight function with smaller spread parameter, and that therefore mostly takes into account the 

ratings of only a few players in the class, one can produce a weighted total that is more correlated with team success than one that 

that significantly takes into account the ratings of all the recruits in the class.  We also found that other classes of weight function 

could be used as effectively as Gaussian densities, so long as they have similar qualitative characteristics.  In addition, we find that 

considering only the ratings of a very small percentage of recruits produces a model that is almost as predictive as an analogous 

model that takes all player ratings into account.   

Second, we find that the division of players into blue chip and non-blue chip categories would be a more effective predictor of 

team success if fewer players were categorized as “blue chip”, and that further dividing non-blue chip players into various 

categories akin to star ratings is of only a small amount of additional value in predicting team success. 

All told, our findings suggest that the composite rating of a high school football player can be a useful tool for determining the 

impact that player will have on his college team's success if that player is among the most elite players in the country, but is 

otherwise a much less useful data point. 
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