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Abstract 

 
Carbon Nanotubes can be used in a wide range of applications due to their outstanding physical properties. Some of 

the applications are as sensors and actuators. A novel photo actuation mechanism has been reported for polymer-

carbon nanotube composites. This unusual quality is favorable in the development of new and better microelectronic 

devices, like in Braille displays, artificial muscles, and drug delivery. Composite fibers combining Multi Wall 

Carbon Nanotubes (MWCNT) and Sodyum dodecyl sulfate (SDS) have been produced in the laboratory by the 

electro–spinning technique. These fibers exhibit photo-actuation properties when exposed to an external light 

source. To study this phenomenon, a model from nonlinear elasticity is used to determine the forces and internal 

torques on a given fiber that were induced by the photo actuation effect. Starting from a digitized picture of the 

deformed fiber, an inverse method is used to construct a function describing the deformation of the fiber using 

splines. Using this function the coefficients in the equations of equilibrium for the fiber can be determined, from 

which the corresponding forces and torques are calculated. This method can be used to study the effects of varying 

Young modulus of the fibers on the induced body forces and torques. 

 
Keywords: Photo-actuation, composite fibers, inverse method, cantilever 

 

 

1. Introduction 

 
On-going efforts to produce novel materials with improved or augmented functionalities as sensors and actuators 

frequently focus in smart materials. Smart materials respond to external stimuli in a controlled fashion. Amongst 

these, stimulus-active polymers (and polymeric composites) are the subject of recent discussion. Indeed, the 

possibility of microsystem integration and of biocompatibility has opened the door to actuators in Braille displays
10

, 

artificial muscles
4
, and drug delivery. In the recent literature, a number of studies have reviewed the current state of 

the art in shape-memory polymers responsive to a variety of stimuli (heat, light, magnetic and electric fields, and 

water/solvent media)
9,5

, addressing physical mechanisms inherent to actuation. Historically, thermally-activated 

shape-memory polymers were first studied and several activation mechanisms have been documented, such as 

melting transition or in-direction heating amongst others
9
. Mostly, the physics behind the actuation can be explained 

by the capacity of the polymer (or polymeric composite), with negligible internal stress in the original state, to store 

mechanical deformation at lower temperatures. Upon increased temperature, temporary cross-links release 

mechanical stress, leading to recovery of the original shape
5
. Electroactive polymers possibly second their 

thermoactive counterparts in technological advancement. Two activation mechanisms prevail: field actuation and 

ionic diffusion
4
. In field-activated systems, a Coulomb electrostatic field induces conformational changes by dipole 

aligning and ionic electroactive polymers involve ion diffusion upon field activation; where the macroscopic motion 

of charged species is responsible for actuation. 

   A novel actuation mechanism has been reported for polymer-carbon nanotube composites
1,2

. In this scheme, 

irradiation of a source with distribution centered at 675 nm promotes actuation stresses of up to 100 kPa. Although 
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the temperature during actuation increases by ~15ºC, thermal saturation occurs after a few minutes of irradiation, 

therefore dismissing heat as trigger. In addition, the photomechanical response of MWCNTs embedded in a silicon 

rubber PDMS matrix is a new effect not associated to a magnifying mechanism due to the presence of MWCNTs, as 

the pristine elastomer shows a minimal response to the same irradiation source due to heating. Although both 

expansion and contraction-actuation modes are possible (arguably, depending on the degree of alignment due to pre-

applied strains), the magnitude of the stroke depends solely on the matrix, suggesting the possibility of 

photoactuation as a universal phenomenon in polymer-MWCNT composites. These are promising characteristics for 

microelectronic applications, where fast, reversible actuation is preferred for instance, to thermally-induced 

processes.  

   Composite fibers combining MWCNT and Sodyum dodecyl sulfate (SDS) have been produced in the laboratory 

by the electro-spinning technique. These fibers exhibit photo-actuation properties when exposed to an external light 

source
8
. In this paper we employ a model from nonlinear elasticity to describe the deformation of a given fiber and 

for computing the forces and internal torques that induce the photo-actuation effect. We use an inverse method in 

which starting from the known deformation of the fiber, obtained from digitized pictures of the bended fiber, the 

corresponding forces and torques are calculated. 

 

 

2. The Mathematical Model: The Inverse Problem 

 
The discussion in this section is based on the presentation in

3
 where more details and generalizations of the theory 

are discussed. The article in
7
 contains a similar discussion.  

 

   In the Cosserat special theory, a planar configuration of a column or rod can be described with two functions: 

 

         .,span,0:, jibr L  

   The unit vector b(s) is called the directrix at s. If we define the unit vector a = k×b, then a, b ∈ span {i, j}, and 

are orthogonal. Hence there exists a function θ(s) such that: 

 

      .)(cos)(sin)(     ,)(sin)(cos)( jbjia ssssss    

   Since {a, b} is a base for span {i, j}, we can write: 

      ),()()()()( ssssvs bar   

for some functions v(s), η(s). These functions together with μ(s) = θʹ(s) are called the strains and they completely 

characterize the deformation of the column.  We assume that the material of the bar is inextensible and unshearable. 

In terms of the strains, this is equivalent to: 

      ].,0[     ,0)(     ,1)( Lsssv    

   Let (f(s), l(s)) be the external (body) force and torque per unit length respectively, and )),((ˆ ssM   the contact 

bending couple. If we define 
L

s
ttscscs d)()()()( 21 fjic , then we have now

3
 that the equations of equilibrium of 

the bar are given by: 

        ,0,0)()(cos)()(sin)()),((ˆ
21 LsslsscsscssM

ds

d
                  (1) 

subject to the boundary conditions: 

 

.0)(     ,0)0(  L   
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For given functions c1(s), c2(s), l(s), this equations yield a boundary value problem for the function θ(s). This 

boundary value problem is called the direct problem. 

   In the inverse problem, we assume that the functions c1(s), c2(s), l(s) are unknown, with θ(s) known or given. This 

problem in general has no solution, and when it does, it may not be unique. In this paper we consider the special 

case in which c1(s) = 0 and l(s) = l = constant. With these assumptions, equation (1) reduces to: 

 

        .0)(cos)()),((ˆ
2  lsscssM

ds

d
                  (2) 

If θ(s) is known, we can use this equation to get c2(s) and l. 

 

 

3. The Numerical Scheme 

 
The numerical scheme for the solution of the inverse problem consists of two parts: 

 

a) using the laboratory data about the deformation of the fiber, we find approximations for the function θ(s) and 

its derivative. 

b) With the information about θ(s) obtained in the first part, we compute approximations for the function c2(s) and 

the constant l using the differential equation (2) and boundary conditions.  

 

For the theory and error analysis about the numerical techniques used in this section, we refer for instance to
6
. 

 

3.1 Approximation of θ(s) and θʹ(s)      

 
We assume that the information about the deformation of the fiber is given in terms of the data points: 

 

       , 1:),( niyx ii   

where the xi’s are not necessarily uniformly spaced. Define the mid-points of the intervals  [xi,  xi+1], 1 ≤ i ≤ n - 1, by 
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   For any function g(x), we write gi or gi+½ to denote any approximation of g(xi) or g(xi+½) respectively. Define 
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Since the function θ represents the angle that the tangent to the deformed curve makes with the horizontal, we have 

that 
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Hence we can take 
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   The boundary condition θ(0) = 0 is incorporated by taking θ1 = 0, while θʹ(L) = 0 leads to the condition θn = θn-1. 
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To approximate the derivatives of θ as a function of s (the arc-length), we introduce the approximate arc-length 

function given by: 
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We now have that 
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Using that θʹ(L) = 0, we set θʹn = 0. For the approximation θʹ1, we construct the linear polynomial that interpolates 

the data (s2, θʹ2), (s3, θʹ3), and then extrapolate to s1 = 0: 
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3.2 Computation of c2(s) and l 

 
Using the approximations of (θ(si), θʹ(si)) given so far, we can now use equation (2) to approximate the function 

c2(s) and the constant l. To accomplish this, we need the following formulas for approximating the derivatives of 

any given function g(s): 

 

   i) for the derivative at s1 = 0 we use: 
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   ii) To approximate the derivative at sn we use: 
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   iii) To approximate the derivative at the intermediate points si , 2 ≤ i ≤ n-1, we use: 
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These formulas have an O(h
2
) degree of approximation where 
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       . 11|max 1   nissh ii  

   We approximate M̂ ( )( is , si) with: 

      .1     ),,(ˆ nisMM iii    

For ease of notation, we write c(s) in equation (2) instead of c2(s). As c(L) = 0, we have upon setting  s = sn in 

equation (2), and using equation (4), that 
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If we evaluate equation (2) at s1, use the value of l already computed and equation (3), we get that 
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Finally, if we evaluate equation (2) at si and use equation (5), we have that: 
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Since f (s) = cʹ(s), we can use a spline to interpolate the ci'(s), and then differentiate the spline to get approxima-

tions for the vertical component of the external force f. 

 

 

4. Results 
 

We now specify the constitutive function M̂ in equation (2). For the present paper we use the linear (in μ) relation: 

 

      .))((),(ˆ  sEIsM                                   (9) 

   In this equation, E(s) is the Young modulus of the material of the bar or fiber at s, and I(s) is the area moment of 

inertia for the cross sections of the bar at s. When the cross sections of the bar are circular with radius a(s) at s, then 

the area moment of inertia is given by the equation: 

 

      ).(
4
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   In Figure 1 we show the laboratory picture of the deformed fiber that we work with. This fiber is a composite of 

carbon nanotubes with a polymer. The deformation of the fiber could be accounted to a photo-actuation effect when 

the fiber is irradiated with an external light source
8
. For this fiber we have the following approximate values for a, E 

(assumed constant): 
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   This value of E corresponds
11

 to a 2 wt% composite with an approximate density of 1 mg/mm. 

 
Figure 1: Deformed fiber of a carbon nanotube polymer composite. 

 

In Figure 2 we show a digitized version of the deformation in Figure 1. In Figure 3 we show the graph of the 

computed vertical component f2 of the external body force f induced by photo-actuation. The data for this graph is 

obtained from the computed ci's according to equations (6-8). Note that the maximum value of f2 is at s = 0 which is 

where the fiber is attached, and diminishes as s increases (although not monotonically). The average value of this 

component of force over the whole s interval is given by: 

 

      


L

ssf
L 0

11
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where L = sn ≈ 4.976 × 10
-4

 m. This positive value for the average force is consistent with an average bending of the 

fiber in the positive vertical direction. 
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Figure 2: Digitized deformed fiber. 

 

 
Figure 3: Vertical component of the external body force obtained by the inverse method. 

 

   Once we have a working model for computing the effects of photo actuation on the fiber, we can conduct 

experiments using the model. For example, in Figure 4 we show the effect of varying the Young modulus E on the 

average value of the external force and the external couple l (units of torque per unit length or Newtons). These 

results could be used to predict photo actuation effects on fibers with varying concentrations (wt%) of the composite 

of carbon nanotubes and polymer in our case. Other possible experiments could be to study the effects of various 

cross sectional geometries on the computed average external force and couple. 

  

a) Average external force vs Young modulus. b) Average external torque vs Young modulus. 

Figure 4: Effects of varying Young modulus on external average force and couple. 
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5. Closing Remarks 

 
Inverse problems are in general ill-posed. That is, in general they have no solution, and when they do, in general is 

not unique. In our case, by imposing some additional conditions on the solutions sought, we were able to solve the 

inverse problem to get an estimate of the photo-actuation effect on the fiber. The results show that the proposed 

method could be a very useful tool to study these photo-actuation effects on other fibers produced by the electro-

spinning technique or any other method. It would be interesting to study the dependence of the external photo-

actuation effect on light intensity and frequency, and on the various production parameters of the fibers. Another 

important aspect that requires further study is on the selection of the constitutive function in equation (9), in 

particular, the possibility that this function on itself may depend on the parameters of intensity, frequency, etc.. 

Since the fiber deformations are in general three dimensional, it would be interesting and challenging to consider 

more general mechanical models for such deformations. 
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