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Abstract

Continued fractions offer a concrete representation of arbitrary real numbers, where in the past such numbers were
represented in decimal format. Continued fractions are found useful in many different areas of mathematics and
science. Since ancient times they have played an important role in the approximation to real numbers by rational
numbers, using convergents. In 1939 P. Erdos and K. Mahler showed that there are irrational numbers for which each
of the denominators of the convergents of their continued fraction expansion is a prime number. Using the techniques
presented in their paper, and through Theorem 3.5 and Corollary 3.6, we show that for almost all real numbers the
greatest prime factor of the numerator of the nth convergent of the corresponding continued fraction increases rapidly
with n.
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1. Introduction

The first appearance of a continued fraction is often difficult to pinpoint with complete accuracy because they have
been used extensively throughout the past 2000 years. However, the origins of the continued fraction are generally
placed at the advent of the Euclidean Algorithm. The term continued fraction was first coined by the mathematician
John Wallis in his book Opera Mathematica in 1693. In his book he was also the first to explain what the nth con-
vergent of a continued fraction was and how to compute it (Definition 1.3). Applications of continued fractions can
be witnessed in mathematical cryptography, atomic physics, cosmological models, and ecology (see eg. [7], [5], [6],
and [15]). Cryptography is a tool that helps information security meet many of its goals. Through cryptography two
parties can exchange private data in a public manner without the threat of a third-party compromising the integrity
of the data. There are many types of cryptosystems (see eg. [7], [8], [13]) in which their security relies on a com-
putationally difficult mathematical problem. One such cryptosystem relies on a factoring problem to ensure security
[7], and several factoring algorithms based on continued fractions have been developed that defeat the security of this
cryptosystem (see eg. [3], [9]).

Definition 1.1 A continued fraction is of the form

α = a0 +
b0

a1 +
b1

a2 +
b2

. . .

= a0 +
b0
a1

+
b1
a2

+ · · ·︸ ︷︷ ︸
Alternate Notation

,

where a0, a1, a2, . . . and b0, b1, . . . may be real or complex numbers. A Simple Continued Fraction is of the same
form except b0 = b1 = b2 = · · · = 1, a0 is either positive, negative, or zero, and a1, a2, . . . are all positive integers.
We also use [a0, a1, a2, a3, . . . ] as an alternate notation for a simple continued fraction where a0, a1, a2, . . . are called
partial quotients.



Theorem 1.22 A number is rational if and only if it can expressed as a simple finite continued fraction. Conversely,
a number is irrational if and only if it can be expressed as an simple infinite continued fraction.

Definition 1.312 The continued fraction [a1; a2, a3, . . . , an] where n is a non-negative integer less than or equal to k
is called the nth convergent of the continued fraction [a1; a2, a3, . . . , ak]. The nth convergent is denoted by Cn.

Theorem 1.41 The numerators An and the denominators Bn of the nth convergent Cn of the continued fraction
[a1, a2, . . . , ak] satisfy the equations

An = anAn−1 +An−2,

Bn = anBn−1 +Bn−2,

where (n = 3, 4, 5, . . . , k), with the initial values A1 = a1, A2 = a2a1 + 1, B1 = 1, and B2 = a2.

For example, C1 = A1/B1 = 1, C2 = A2/B2 = 3/2, C3 = A3/B3 = 10/7 are convergents of the continued
fraction 1 + 1|

|2 + 1|
|3 .

Theorem 1.514 Let x be irrational, then there are infinitely many rationals numbers A
B such that∣∣∣∣x− A

B

∣∣∣∣ ≤ 1

B2
.

Backdoors are common in cryptosystems as an easy way to retrieve data if a private key is lost. One such RSA
backdoor [10] can be broken using Theorem 1.5 with continued fractions [11].

Theorem 1.614 Let x be irrational, and let A
B be a rational in lowest terms with B > 0, suppose that∣∣∣∣x− A

B

∣∣∣∣ ≤ 1

2B2
.

Then A
B is a convergent in the continued fraction expansion of x.

Given an integer n, we denote the greatest prime factor of n as G(n). In [4], P. Erdos and K. Mahler showed the
following result:

Theorem 1.74 The set of all irrational numbers ζ in 0 ≤ ζ ≤ 1, for which an infinity of indices n exist satisfying

G(Bn) ≤ e
lnBn

20 ln lnBn

is of measure zero, where Bn is the denominator of the nth convergent of the continued fraction expansion of ζ.

We show that Theorem 1.7 is also valid for the numerator An.

In [4], P. Erdos and K. Mahler showed the following:

Theorem 1.84 For almost all irrational numbers ζ, the greatest prime factor of the denominator of the nth

convergent of the continued fraction expansion of ζ, increases rapidly with n.

In this paper we show a corresponding result, except with respect to the numerator of the nth convergent of the
continued fraction expansion of ζ, by Corollary 3.6.

In Section 2 we introduce and define Big O Notation which is essential for the majority of our theorems. In Section
3 we follow the techniques established by P. Erdos and K. Mahler in their paper [4], however we fill in a number of
gaps that were orignially left out by the authors. Additionally, in Section 3 we prove Theorem 3.5, which is paramount
concerning the validity of Corollary 3.6. Section 4 is comprised of data analysis where we applied our research
with concrete numbers. Through this analysis we stray a bit and find that investigating convergents with both prime
numerators and prime denominators could be an insightful area for future research.
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2. Big O Notation

Big O Notation, also called Landau’s Symbol, is a symbol in mathematics and computer science that is used to describe
the asymptotic nature of functions. Throughout this paper we will make use of Big O Notation.

Definition 2.116 Suppose f(x) and g(x) are two functions defined on a subset of the real numbers, we write f(x) =
O (g(x)) if an only if there exists constants N and C such that |f(x)| ≤ C|g(x)| for all x > N .

Theorem 2.216 If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then f1(x) + f2(x) = O(max (g1(x), g2(x))).

Theorem 2.316 If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then f1(x) · f2(x) = O(g1(x) · g2(x)).

3. Irrational numbers and convergents with prime numbers

Let An/Bn be the nth convergent of an infinite continued fraction ζ = [a1, a2, a3, . . . ] where a1, a2, . . . are positive
integers. We show that for almost all ζ, G(An) increases rapidly with n. In the following, ζ is a positive irrational
number where

A−1
B−1

=
1

0
,

A0

B0
=
a0
1
,

A1

B1
=
a0a1 + 1

a1
, . . .

is the sequence of its convergents. We divide the set of all positive integers k for which

k ≤ x, G(k) ≤ e
ln k

20 ln (ln k) (1)

into three classes H , I , and J . Where H consists of those elements which are divisible by a square greater than or

equal to (lnx)10, and the remaining elements k belong to I or J , according as k ≥
√
x or k <

√
x. Let L = e

ln k
20 ln ln k ,

S = {ξ < k : G(k) ≤ L} and Tx = {k ≤ x : G(k) ≤ L}. Let

H = {k ∈ Tx : (∃r ∈ N)(r2 ≥ (lnx)10 and r2|k)},
I = {k ∈ Tx −H : k ≥

√
x},

J = {k ∈ Tx − (H ∪ I) : k <
√
x},

then S = ∪Tx. We now prove three lemmas that show us the size of H , I , and J , which we will need to prove
Theorem 3.4.

Lemma 3.1 If H = {k ∈ Tx : (∃r ∈ N)(r2 ≥ (lnx)10 and r2|k)}, then |H| = O
(

x
(ln x)5

)
.

Proof. The object is to find how many multiples r2 there are of k that are less than x but greater than (lnx)10. Observe
that there are x/r2 many multiples less than or equal to x. Since r2 ≥ (lnx)10, then certainly r ≥ (lnx)5. Therefore,

|H| =
∑

r≥(ln x)5

x

r2
= x

∑
r≥(ln x)5

1

r2
= x

∫ ∞
(ln x)5

1

y2
dy = x lim

y→∞

∫ y

(ln x)5

1

y2
dy = x

(
lim
y→∞

−1

y
+

1

(lnx)5

)
=

x

(lnx)5
.

This implies that |H| ≤ x/(lnx)5, and in Big O notation we have |H| = O
(
x/(lnx)5

)
.

Lemma 3.2 If I = {k ∈ Tx −H : k ≥
√
x}, then |I| = O

(
x

(ln x)4

)
.

Proof. To find |I| let k ∈ I , and let k = ph1
1 ph2

2 ph3
3 . . . pht

t be its representation as a product of powers of different
primes. Since k ∈ I , then

√
x ≤ k ≤ x. (2)

If an exponent h ≥ 2, either ph−1 or ph is a square factor of k, and therefore ph−1 < (lnx)10. There are two cases,
either h is even or h is odd. If h is odd then h = 2`+ 1 for some integer `, and we have ph−1 = p2`+1−1 = p2`, thus
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a square factor fo k. If h is even, then it is plain that ph is a square factor of k, and ph−1 < (lnx)10 holds. We are
looking at elements in I , so all square factors will be less than (lnx)10 since we have already accounted for all square
factors greater than or equal to (lnx)10 when determining the size of H . Since ph−1 < (lnx)10, then it must be that
ph ≤ (lnx)

10h
h−1 , and since it is the case that h ≥ 2 then (lnx)

10h
h−1 ≤ (lnx)20.

Note that since lim
x→∞

lnx

(ln (lnx))2
=∞, we observe that for sufficiently large x,

800 ≤ lnx

(ln (lnx))2
=⇒ 20 ≤ lnx

40(ln (lnx))2
=⇒ 20 · ln (lnx) ≤ lnx

40(ln (lnx))
. (3)

Thus, we end up with

20 · ln (lnx) ≤ lnx

40(ln (lnx))
=⇒ eln (ln x)·20 ≤ e

ln x
40 ln (ln x) =⇒ (lnx)20 ≤ e

ln x
40 ln (ln x) . (4)

Now observe that

e
ln x

40 ln (ln x) = e
ln x

20(ln (ln x)) ·
1
2 = e

1
2 · lnx

20(ln (ln x)) = e
ln
√
x

20(ln (ln x)) , (5)

and since
√
x ≤ k ≤ x,

20 ln (ln k) < 20 ln (lnx) =⇒ 1

20 ln (lnx)
<

1

20 ln (ln k)
(6)

then we have that

e
ln
√
x

20 ln (ln x) ≤ e
ln k

20 ln (ln (k)) . (7)

Lastly, because of (2) through (7) we have that ph ≤ (lnx)
10h
h−1 ≤ (lnx)20 ≤ e

ln x
40(ln (ln x)) ≤ e

ln k
20 ln (ln k) . When

h = 1 we have that k = p1p2 · · · pt where t ≥ 20 ln (ln k). Thus, we have that k is divisible by at least 20 ln (ln k)
distinct primes. Further, observe that since

√
x ≤ k we have

1

2
lnx ≤ ln k =⇒ lnx ≤ 2 · ln k =⇒ ln (lnx) ≤ ln (2 · ln k) =⇒ 10 · ln (lnx) ≤ 10 · ln (2 · ln k)

=⇒ 10 · ln (lnx) ≤ 10 · ln (2 · ln k) ≤ 10 · ln ((ln k)2) = 20 · ln (ln k)

therefore it must be that 10·ln (lnx) ≤ 20·ln (ln k). So we find that k is divisible by at least 20 ln (ln k) ≥ 10 ln (lnx)
different prime factors for sufficently large x. Denote d(k) as the the total number of divisors of k, then by definition
of the divisor function σ(pn#) = 2n, where pn# is the primorial of k. It follows that

d(k) = σ(pt#) = 2t = 2 · 2 · 2 · · · · · 2︸ ︷︷ ︸
t ≥ 10 ln (ln x)

and from this we have that

d(k) ≥ 210 ln (lnx) = (22)5 ln (lnx) ≥ eln ((lnx)
5) = (lnx)5.

By Dirichlet we have
∑

k≤x d(k) = O(x lnx), and since d(k) ≥ (lnx)5 =⇒ x ln x
d(k) ≤

x ln x
(ln x)5 it must be that I has at

most

1

(lnx)5
O(x lnx) = O

(
x

(lnx)4

)
elements k.

Lemma 3.3 If J = {k ∈ Tx − (H ∪ I) : k <
√
x}, then |H|+ |I|+

√
x = O

(
x

(ln x)4

)
.
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Proof. By Lemma 3.1 and Lemma 3.2, and since J has less than
√
x elements, there are therefore only

O
(

x

(lnx)5

)
+O

(
x

(lnx)4

)
+
√
x (8)

integers k satisfying (1). We can write (8) as C1
x

(ln x)5 + C2
x

(ln x)4 + C3
√
x and take C = max {C1, C2, C3}, then

C1
x

(lnx)5
+ C2

x

(lnx)4
+ C3

√
x ≤ C

(
x

(lnx)4
+

x

(lnx)4
+ x

)
= C

(
2x+ x(lnx)4

(lnx)4

)
≤ C

(
2x+ 2x(lnx)4

(lnx)4

)
= 2C

(
x+ x(lnx)4

(lnx)4

)
≤ C

(
x(1 + 1

x4 )

(lnx)4

)
≤ C

(
2x

(lnx)4

)
= 2C

(
x

(lnx)4

)
= O

(
x

(lnx)4

)
.

(9)

Therefore by (9) we have that

|H|+ |I|+
√
x = O

(
x

(lnx)5

)
+O

(
x

(lnx)4

)
+
√
x = O

(
x

(lnx)4

)
.

The following theorem will be used to help us prove our main result. It follows (Lemma 1, [4]) by P. Erdos and K.
Mahler, however we give a much more detailed account.

Theorem 3.44 Let S be the set of all positive integers k for which

k ≥ ξ, G(k) ≤ e
ln k

20 ln (ln k)

then, for large ξ > 0, ∑
k∈S

1

k
= O

(
(ln ξ)−3

)
.

Proof. Suppose now that

k1, k2, k3, . . . , ki, . . . (1 ≤ k1 < k2 < k3 < . . . )

is a sequence of positive integers for which G(ki) ≤ e
ln k

20 ln (ln k) . We have shown through Lemma 3.1, Lemma 3.2,
and Lemma 3.3 that |T | = |A|+ |B|+ |C| = O

(
x

(ln x)4

)
, so consider the case that T contains only one element k1,

where k1 ≥ 1. We have 1 = |T | = O
(

k1

(ln k1)4

)
and therefore 1

k1
≤ C 1

(ln k1)4
. Consider the case that T contains two

elements k1 and k2 where k1 < k2 and k2 ≥ 2. We have 2 = |T | = O
(

k2

(ln k2)4

)
and therefore 1

k2
≤ C 1

2(ln k2)4
.

Lastly, consider the case where T contains three elements k1, k2, k3 where k1 < k2 < k3 and k3 ≥ 3. We have
3 = |T | = O

(
k3

3(ln k3)4

)
and therefore 1

k3
≤ C 1

3(ln k3)4
. It follows that 1

ki
≤ C 1

i(ln ki)4
. Now consider the summation

for 1/ki for i ≥ n∑
i≥n

1

ki
= O

(
1

n(lnn)4

)
+O

(
1

(n+ 1)(ln (n+ 1))4

)
+ · · · = O

(
1

n(lnn)4

)
(10)

and by (10) we have∑
i≥n

1

ki
≤ C 1

n(lnn)4
≤ C 1

(lnn)4
≤ C lnn

(lnn)4
= C

1

(lnn)3
=⇒

∑
i≥n

1

ki
= O

(
1

(lnn)3

)
(11)

which completes our proof.
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The next theorem is original work. We need a way to utilize the techniques provided by P. Erdos and K. Mahler in
[4], except with regard to the numerator instead of the denominator. Theorem 3.5 solves this quandary for us so that
we can easily apply the techniques in [4].

Theorem 3.5 The nth convergent of the simple continued fraction of the irrational number x where 0 ≤ x ≤ 1, is
the reciprocal to the nth convergent of 1/x.

Proof. We will use proof by induction. Let x ∈ R be irrational with 0 ≤ x ≤ 1. Consider the simple continued
fraction expansion for x,

x = 0 +
1
a1

+
1
a2

+ · · · = [0, a1, a2, . . . ].

We also have the simple continued fraction expansion for 1/x as

1

x
=

1

0 +
1
a1

+
1
a2

+ · · ·
= a1 +

1
a2

+ · · · = [a1, a2, . . . ].

Let c′n = A′n/B
′
n represent convergents for x, and let cn = An/Bn represent convergents for 1/x. For the first three

convergents of c′n we have,

A′1 = 1, A′2 = a2, A
′
3 = a2a3 + 1, . . .

B′1 = a1, B
′
2 = a1a2 + 1, B′3 = a1a2a3 + a1a3 + a1, . . . .

Similarly, for the first three convergents of cn we have,

A1 = a1, A2 = a1a2 + 1, A3 = a1a2a3 + a1a3 + a1, . . .

B1 = 1, B2 = a2, B3 = a2a3 + 1, . . . .

Hence, we have that A′1 = B1, A
′
2 = B2, and A′3 = B3. Consider the n+ 1th convergent of x,

c′n+1 = 0 +
1
a1

+
1
a2

+ · · ·+ 1
an

+
1

an+1
= 0 +

1
a1

+
1
a2
· · ·+ anan+1 + 1

an+1

which implies that by combining the last two terms of c′n+1 we get the equality

c′n+1 = [0, a1, . . . , an−1, an, an+1]︸ ︷︷ ︸
n + 1th convergent

= [0, a1, . . . , an−1,

nth term︷ ︸︸ ︷
anan+1 + 1

an+1
]︸ ︷︷ ︸

nth convergent

= c′n. (12)

Since have have already shown that A′1 = B1, A′2 = B2, and A′3 = B3 then we have that

c′1 =
A′1
B′1

=
B1

A1
=

1
A1

B1

=
1

c1
,

which satisfies the base case of our induction proof. For our inductive hypothesis assume that c′n = 1
cn

for n = k.
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Then for n = k + 1 we have that

c′k+1 = [0, a1, . . . , ak−1, ak, ak+1]

=

[
0, a1, . . . , ak−1,

akak+1 + 1

ak+1

]
︸ ︷︷ ︸

kth convergent

[By using (12).]

=
1[

a1, a2, . . . , ak−1,
akak+1+1

ak+1

] [By Inductive Hypothesis.]

=
1

[a1, a2, . . . , ak, ak+1]
[By using (12).]

=
1

ck+1
,

and it is proved that for all n ∈ N we have c′n = 1/cn.

Corollary 3.6 For almost all irrational numbers ζ, the greatest prime factor of the numeratorAn of the nth convergent
Cn = An/Bn of the continued fraction expansion of ζ, increases rapidly with n.

Proof. By P. Erdos and K. Mahler (Lemma 2, [4]) and Theorem 3.5, we have that Theorem 1.7 holds for An. That
is, we have that the set of all irrational numbers ζ in 0 ≤ x ≤ 1, for which an infinity of indices n exist satisfying

G(An) ≤ e
lnAn

20 ln lnAn is of measure zero. Therefore, it follows from (Theorem 1, [4]) and (Theorem 1 (1), [4]) that for
almost all ζ in 0 ≤ ζ ≤ 1 and all sufficiently large n we have that G(An) ≥ e

n
50 lnn .

4. Experimental data

For a visual representation of our research we created the two graphs below. Using Maple we wrote a program that
collected the number of prime numerators of convergents along with the largeness of the primes for a continued
fraction expansion of a given irrational number. We tested convergents for n · e and n · π where 0 < n ≤ 500. For
each n we then tested the primality of the the numerator for convergents up to 500 and 700, for n · e and n · π
respectively. In two particular cases, 234 · e (Figure 1) and 230 · π (Figure 2) we found that indeed that number of
prime numerators and the largeness of the primes increased as the convergents increased.

Figure 1: (234 · e) Prime Numerators vs
Convergents

Figure 2: (230 · π) Prime Numerators vs
Convergents

While collecting data for our experiment results, we also decided to collect data to determine the number of times
that the convergents of e and π had both prime numerators and prime denominators. We found that by testing up to
2000 convergents for the continued fraction expansion of e there were only three such convergents that had both a
prime numerator and denominator (Figure 3). Similarly, by testing up to 2000 convergents for the continued fraction
expansion for π we only found one such case where a convergent had a prime numerator and denominator (Figure 4).
In the future, we wish to explore the nature of irrational numbers where the convergents have both a prime numerator
and denominator.

315



Figure 3: e Prime Numerator and
Denominator vs Convergents

Figure 4: π Prime Numerator and
Denominator vs Convergents

5. Concluding remarks
Providing a fully detailed account of the theorems in [4] proved quite daunting. In [4] P. Erdos and K. Mahler
mention only briefly that corresponding results produced through their paper also hold for the numerator, however a
proof is not provided. The gaps in [4] initially seemed small, however filling them in became quite difficult and
complex. In order to show that the largest prime factor of the numerator increased rapidly with the convergents we
needed an additional theorem – namely Theorem 3.5. Corollary 3.6 then immediately followed.
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