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Abstract 
 

A bipartite graph G(X, Y, E) is an interval bi-graph if to every vertex, v V (G), we can assign an interval on the 

real line, Iv, such that xy E(G) if and only if Ix Iy =  and x X and y Y . There is a significant amount of research 

currently being conducted in the area of interval bi-graphs. In this paper we will look at interval 3-graphs. 

These graphs are obtained by adding an additional partite set to an interval bi- graph. Here we find a 

forbidden sub-graph of interval 3-graphs as well as some properties of a special classification of an interval 

3-graph.  
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1. Introduction  
 

Interval graphs were introduced by Hajos [2] and were then characterized by the absence of induced cycles 

of length larger than 3 and asteroidal triples by Lekkerkerker and Boland [6] in 1962. These graphs are used 

to provide numerous models in diverse areas such as genetics, psychology, sociology, archaeology, or 

scheduling. Other useful characterizations of interval graphs were given by Gilmore and Hofman in 1964 

[13] and Fulkerson and Gross [12]. For more details on interval graphs and their applications, see books by 

Roberts [16], Golumbic [14] and Mckee and McMorris [15]. So far no complete forbidden sub-graph 

characterizations of interval bi-graphs has been found, but initially it was thought that asteroidal triples of 

edges along with induced cycles larger than 4 would work. They proved that if B is an interval bi-graph then 

B does not have asteroidal triple of edges(ATE). An ATE is a set of three edges such that for any two there is a 

path from the vertex set of one to the vertex set of the other that avoids the neighborhood of the third edge. 

However, Muller [7] found insects and Hell and Huang [4] found edge asteroids and bugs as forbidden sub-

graphs, and to date a complete characterization is still not available.  
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2. Preliminaries  
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: The interval representation of a complete K1,3 graph 
 

2.1 Definition 1. 
 
 Let a graph G have vertex set V and edge set E. If x, y V are adjacent, then we denote xy E. A finite 

simple graph G(V,E) is an interval graph if we can find a mapping :v Iv from vertices of G to intervals on the real 

line such that the edge xy exists if and only if IxIy =   for all x, y V (G). 

 
 
 
 
 
 
 

 
 
 
 

Figure 2: The interval representation of a complete bipartite K1,3 graph 

 
2.2 Definition 2.  

 
A bipartite graph G(X, Y, E) is an interval bi-graph if to every vertex, v V (G), we can assign an interval on the 

real line, Iv, such that xy E(G) if and only if Ix Iy =  and x X and y Y .  

 
2.3 Definition 3.  
 
A Star with n+1 vertices is a complete k1,n as shown in Figure 3.  
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2.4 Definition 4.  
 
A ClawGraph is a Star Sn where n = 3 as seen in Figure 3. 
 

 

 

 

 

 

 

Figure 3: S3 Claw 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: 2-Star3 2-Claw 
 

2.5 Definition 5.  
 
A 2-Starn is a graph with n k3s which share a common vertex, as shown in Figure 4.  
 
2.6 Definition 6.  
 
A 2-ClawGraph is a 2-starn where n = 3, as seen in Figure 4. 
 

Now we will add vertices to the different components of the central vertex of a 2-ClawGraph to obtain our 

graphs of interest. Each time a new set of vertices is added they shall be called the terminating vertices for 

the particular structure they create. The newly formed edges shall be known as the terminating edges. Also, 

the newly formed k3s shall be known as the terminating k3s.  

 
 

 

 

 

 

 

 

 

 

Figure 5: 1-Extended 2-ClawGraph 
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2.7 Definition 7.  

 

A 1-Extended 2-ClawGraph is a graph in which 3 vertices (xi; i=1,2,3) are made adjacent to the vertices of 

the edges of the 3 k3s of a 2-ClawGraph such that the xis⇔ v for i = 1, 2, 3 where v is the central vertex (the 

k3s that this formed are the terminating k3s of the graph).  

 
 
 
 
 
 
 

 
 

Figure 6: 2-Extended 2-ClawGraph 

 

2.8 Definition 8.  

 
A 2-Extended 2-ClawGraph is a graph in which 3 vertices (wi; i=1,2,3) are made adjacent to the vertices of 

the edges of the 3 terminating k3s of a 1-Extended 2-ClawGraph as seen in Figure 6. It can be noted here as 

seen in Figure 6 that wi; i = 1, 2, 3 are the new terminating vertices, and since wi can be adjacent to either xi, 

yi where i = 1, 2, 3 or xi, zi where i = 1, 2, 3 and so either xi, yi, wi where i = 1, 2, 3 or xi, zi, wi where i = 1, 2, 

3 becomes the new terminating k3s.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: tripartite representation of a 2-ClawGraph 
 

2.9 Definition 9.  

 

A tripartite graph T (X, Y, Z, E) is an interval 3-graph if to every vertex, v V (T ), we can assign an interval of the real 

line, Iv, such that x, y E(T ) and y, z E(T ) and x, z E(T ) if and only if Ix Iy =∅ and Iy Iz =∅ and Ix Iz =∅ and x X and y Y 

and z Z A tripartite graph T (X, Y, Z, E) is an interval 3-graph if to every vertex, v V (T ), we can assign an 

interval of the real line, Iv, such that x, y E(T ) and y, z E(T ) and x, z E(T ) if and only if Ix Iy =∅and Iy Iz =∅ and Ix 

Iz =∅ and x X and y Y and z Z.  
. 
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3. Interval 3-graphs  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: A representation of a 1-Extended 2-ClawGraph, known as T 

 

3.1 Lemma 1.  

 
The 1-Extended 2-ClawGraph which we will denote by T, as seen in Figure 8, is an Interval 3graph.  
 

Proof. We will prove this by giving an interval 3-graph representation of the 1-Extended 2-ClawGraph. Let 

the vertex v c1. Let X =x1, x2, x3, Y = y1, y2, y3, and Z =z1, z2, z3. Next let Y c2, note that c1 = c2 because 

v⇔ the vertices in Y⇒ Iv Iy
i
 =  where i = 1, 2, 3 and the color class of Y = the color class of v. Next let Z c3, 

note that c1 = c2 = c3 because z1⇔ y1, z2⇔ y2, z3⇔ y3⇒ Iz
i
 Iy

i
 =  where i = 1, 2, 3 and the vertices of Y and the 

vertices of Z belong to a different color class, and the vertices of Z⇔ v⇒ Iz
i
 Iv =  where i = 1, 2, 3 and the 

vertices of Z and the vertex v belong to a different color class. Next we color X, Note that the vertices in 

X⇔ v⇒ Ix
i
 Iv =  where i = 1, 2, 3 or the color class of X is the same as the color class of v but, Ix

i
 Iv =  where 

i = 1, 2, 3 is forced for at least one xi, i = 1, 2, 3 but xi⇔ v⇐ that xi must share the same color class as v 

thus X c1.  
 

3.2 Lemma 2.  

 
In an Interval 3-graph representation of a 1-Extended 2-Claw Graph, as shown in Figure 8, the  

terminating vertices will always share the same color class as the central vertex.  
 

   Proof. Let us consider the 1-Extended 2-Claw Graph T, given in Figure 8, whose terminating vertices are 

x1, x2, x3. Let the central vertex v belong to the color class c1. Let X =x1, x2, x3, Y =y1, y2, y3, 

and Z = z1, z2, z3. Let the vertices of Y belong to the color class c2 and let the vertices of Z belong to 

the color class c3. Since the vertices of X are adjacent to the vertices of Y , the color class of X = c2 = the 

color class of Y . Since the vertices of X are adjacent to the vertices of Z, the color class of X = c3 = the 

color class of Z. ∴ the vertices of X belong to the color class c1, which is the same as the color class of 

the central vertex v. Thus, we do the interval 3-graph representation of T such that vertices v, x1, x2, x3 

belong to the same color class c1. Even though Ix2
 Iv =  is forced, as shown in Figure 8, it does not imply 

adjacency between x2 and v since they belong to the same color class. Therefore, the terminating 
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vertices x1, x2, x3 of 1- Extended 2-Claw Graph T will always share the same color class as the central vertex v.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: A representation of a the 2-Extended 2-ClawGraph, known as T 1 
 
3.3 Theorem 1. An interval 3-Graph cannot have T1, as shown in Figure 9, as an induced subgraph.  
 

Proof. We will use Figure 8 and Figure 9 to prove Theorem 1. Assume there exists an interval graph G such 

that T1 as given in Figure 9 is an induced subgraph of G. Thus T1 must have an interval 3-graph 

representation. It can be seen by comparing Figure 8 and Figure 9, that T1 can be constructed by adding 

three new vertices w1, w2, w3 to T (from Figure 8) such that each component of v gets a new vertex as shown in 

Figure 9. Let W = w1, w2, w3. We now look at the interval 3-graph representation of T1. To do this we take 

the representation of T from Figure 8 and add three intervals corresponding to vertices wi where i = 1, 2, 3 as shown 

in Figure 9. We now choose the color class of the vertices of W . Since wi⇔ xi, wi⇔ zi; i = 1, 2, 3 so the color 

class of W must not be c1(which is the color class of the vertices of X) or c3(which is the color class of the 

vertices of Z) and hence it should be c2. Note that the vertices of W are not adjacent to v so Iw
1
 is drawn 

such that r(Iw
1
) < l(Iv) and Iw

3
 is drawn such that l(Iw

3
) > r(Iv) as shown in Figure 9. Now we look at the vertex 

w2. We know that the color class of wi; i = 1, 2, 3 is the same as the color class of yi; i = 1, 2, 3 which is c2. It 

can be easily seen from Figure 9 that Iw
2
 Iv =  is forced. We also know that the color class of w2 = c2 = c1 = the 

color class of v. This implies that w2 must be adjacent to v which is a contradiction. Hence T1 is not an  

interval 3-graph.  
 

 

4. Conclusion  
 

In future work, we will examine different properties of interval 3-graphs and extend the current results to 

interval k-graphs. Interval k-graphs are graphs with proper coloring where each vertex v can be assigned an 

interval Iv of the real line such that two vertices are adjacent if and only if their corresponding intervals 

overlap and each vertex has a different color.  
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