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Abstract 

 
The power used by electric vehicles (EVs) has a significant impact on the electric grid. It is important to know the 

probabilistic and statistical characteristics of charging demand, as they can improve load forecast accuracy and 

electric grid operation. In this research, we identified and evaluated parametric models of the electrical power used 

by EV charging stations. The models are based on charging station data in the Seattle, Washington and San Diego, 

California areas. To generate these models, we organized the data in both 15-minutely and hourly intervals. We then 

created and visually inspected the histograms of the data to select parametric distributions that are the most 

promising. The best candidates were the Weibull, General Extreme Value, Gamma, Inverse Gaussian, Log Logistic, 

Normal and Lognormal. We estimated the parameters for each distribution using the maximum likelihood estimation 

procedure. To evaluate the parametric models, we used the chi-squared test, which evaluates the goodness-of-fit of a 

considered parametric distribution to the data set. A criticism of the chi-squared test is that the number of bins to use 

is subjective. To mitigate this, we selected three different numbers of bins to evaluate. First we used Log2(N) to 

determine the number of bins—Sturges’ rule of thumb—where N is the number of samples for either the 15-

minutely or hourly interval, and a plus/minus 3 bin sensitivity. The results of the analysis indicate that the Weibull 

and Generalized Extreme Value distributions are good candidates for EV charging station load modeling. However, 

the distribution that was the best fit for Seattle was different than for San Diego. This is likely due to time-of-use 

pricing that San Diego utilizes. Time-of-use pricing encourages energy consumption to be concentrated into a 

smaller interval by charging people less money for electricity during non-peak hours. Hence the energy draw is 

more concentrated in San Diego than Seattle. The results can be used to help analyze the impact of increased energy 

demand caused by EVs, and enable load forecasters to better understand how to plan and operate the grid.  
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1. Introduction 

 
The existing transportation system relies primarily on fossil fuels in the form of petroleum. In the last 100 years, 

internal combustion engines (ICEs) have been the dominant source of vehicle propulsion. However, there are 

concerns about using ICEs such as energy independence, inefficiency, noise pollution and harmful emissions. As 

society’s dependence on fossil fuels grows, these negative consequences become more daunting every year. As a 

more practical sustainable solution for transportation, plug-in electric vehicles (PEVs) enable environmentally-

benign and domestically-produced electricity to replace petroleum fossil fuels. Electric vehicles (EVs) consume 

approximately 300 Wh/mi, which translates into approximately 10 kWh per average commute. ICEs on the other 

hand are less efficient, consuming 36.6 kWh per average commute
1
. Although EVs are more efficient, they rely on 

the power grid to recharge their batteries. There are open questions about how this increased consumption of  
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   Electricity will affect the power grid, particularly at the lower voltage distribution level. In future scenarios, EV 

recharging will account for an appreciable amount of energy
2
. The effects of this increase in energy demand needs to 

be examined because it will enable us to understand how to plan and operate the grid with high levels of EV 

penetration. Researchers have been unable to create parametric models of EV charging station demand because of a 

lack of data availability. Instead, they rely on indirect data such as driver surveys and vehicle GPS data and then 

develop mathematical models approximating drive behavior, vehicle weight, vehicle aerodynamic properties, 

charger specifications and others
2
. The complexity of these models is no longer needed if sufficient direct 

measurements are available. Recently, ECOtality accumulated enough data to allow researchers to analyze and 

model EV charging station demand
3
. 

   In this work, we analyze two data sets provided by ECOtality and investigate the appropriateness of several 

parametric distributions to model the data. We applied a chi-squared goodness-of-fit to data sets covering the Seattle 

and San Diego areas over a one-year period. The test allowed us to make recommendations for model use and also 

comment on the statistical significance of the fit of the model. 

  This paper is organized as follows. In Section II, the charging data sets of Seattle and San Diego are discussed. In 

Section III, the methodology of how we applied the chi-squared test to fit the distributions is explained. The results 

of the analysis are specified and discussed in Section IV, and conclusions follow in Section V. 

 

 

2. Data Set Description 

 
The “EV Project” was launched by ECOtality to collect EV charging station data for certain Nissan LEAF and 

Chevrolet Volt vehicles. The information that the EV Project collects includes the vehicle model, energy used and 

time and duration of charger use. We focused the research on the data sets corresponding to Washington State and 

California for the year 2012. These areas have similar amounts of registered EVs in the EV Project data set and a 

similar number of charging stations. This allows us to meaningfully compare the data sets and models. Within 

Washington State (Seattle), and California (San Diego), 1,200 and 1,259 EVs are currently being analyzed under the 

EV Project, respectively
3
.  

   Although the data sets are similar in many regards, there is one important difference. San Diego utilizes Time-of-

Use (TOU) pricing, and Seattle does not. This is represented in the load demand profiles. Under a TOU pricing 

scheme, the price of electricity is varied in a predetermined manner throughout the day. This allows utilities to 

operate the grid more economically. In San Diego, the lowest rates occur for the time interval from 0:00-5:00. There 

is economic incentive therefore, for drivers to program the electric vehicle supply equipment (EVSE) or PEVs to 

begin charging during this interval.  

   The data sets contain aggregated EV charging station demand values sampled at 15-minute intervals during 2012 

(35,136 total samples). Our work considered the 15-minutely samples as well as the hourly-averages of these 

samples. 

 

 

3. General Observations 

 
Figure 1 shows the hourly average consumption load profile for Seattle in the year 2012. The daily average is 186.52 

kW. The load is above the average in the evening, beginning at 16:00 continuing to the end of 2:00. At all other 

times, the load profile is below the average. 
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Figure 1: Seattle EV Charging Load Profile  

   The load profile smoothly transitions throughout the day, peaking around 23:00. The nighttime peak is expected 

because EV drivers usually come home in the early evening to charge their EVs. As more drivers return, the power 

consumption continues to increase until 23:00—by this time many EVs have become fully charged. The load 

steadily decreases until 4:00 then increases as commuters drive to work, some of them charging their EVs at their 

workplace. 

   Figure 2 shows the hourly average consumption load profile for San Diego in the year 2012. The daily average is 

244.92 kW. The load is above the average in the early morning, beginning at 0:00 to the ending of 3:00. The 

concentration during this time is likely due to TOU pricing that encourages drivers to charge their EVs during “non-

peak hours” (0:00-5:00). The load consumption tends to be smaller outside this period when TOU prices are more 

expensive.   

 
 

Figure 2: San Diego EV Charging Load Profile 

 

   Figures 3 and 4 show the histograms of the Seattle data at 15-minutely and hourly intervals. It is important to note 

that most of the power consumption in Figures 3 and 4 is around 100 to 200 kW and the maximum power consumed 

is 875 kW. Due to the relatively smooth load profile, the majority of the time the power consumption is within a 

narrow range. In fact, 80% of the time the consumption is below 281 kW.  
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Figure 3: Seattle 15-Minutely Charging Data 

 

Figure 4: Seattle Hourly Charging Data 

   Figures 5 and 6 show the histograms of the San Diego data at 15-minutely and hourly intervals. The maximum 

power consumed is approximately 1500 kW. TOU pricing is likely responsible for the occurrences of extreme 

consumption shown in Figures 5 and 6. Nearly 12% of the time, consumption is above 484 kW. During the other 

hours of the day when prices are higher, the demand rarely exceeds 200 kW; this explains the large concentration of 

occurrences at low power for the San Diego data.   
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Figure 5: San Diego 15-Minutely Charging Data 

 
 

Figure 6: San Diego Hourly Interval Charging Data 

   Overall, Figures 3-6 show the histograms to be unimodal, having one peak at the 100 or 200 kW mark and being 

positively skewed. Occurrences of extreme power consumption are possible—particularly in San Diego—but are 

otherwise rare. 

 

 

4. Methodology  

 
With the general characteristics of the Seattle and San Diego data sets examined, the next step is to evaluate the 

parametric distributions. Table 1 lists the different parametric distributions we considered as models for the EV 

charging station data. We first visually inspected the histograms of the data to select distributions that were the most 

promising. From the list of distributions in Table 1, the best candidates were the Weibull, General Extreme Value, 

Gamma, Inverse Gaussian, Log Logistic, Normal and Lognormal. 
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Table 1: parametric distributions considered 

 

Distribution Name 

Beta 

Binomial 

Birnbaum-Saunders 

Burr Type XII 

Exponential 

Extreme Value 

Gamma 

Generalized Extreme Value 

Generalized Pareto 

Inverse Gaussian 

Logistic 

Log-logistic 

Lognormal 

Nakagami 

Negative Binomial 

Normal 

Poisson 

Rayleigh 

Rician 

T Location-Scale 

Weibull 

 

   Next, the parameters for these eight distributions were fit to each data set. The maximum likelihood estimation 

procedure was used to determine the parameters for each distribution except for the Normal and Lognormal 

distributions
4
. For the Normal distribution, the estimated value of the standard deviation is the square root of the 

unbiased estimate of the variance
5
. For the Lognormal distribution, the square root of the unbiased estimate of the 

variance of the log of the data is the value of the standard deviation parameter
6
. 

   The fit of the distributions to each data set was then evaluated using the chi-squared goodness-of-fit test. The chi-

squared goodness-of-fit test is an established, although somewhat subjective, method of statistical hypothesis 

testing. In the context of this work, the distribution of samples for each data set is compared to each of the eight 

candidate distributions. A single metric—the so-called χ
2
 test statistic—is used to quantify the fit. The χ

 2
 test 

statistic has two uses: first, it allows for a comparative analysis of the goodness-of-fit of the candidate distributions, 

that is, we can rank the candidate distributions based on how well each fits the sampled data; second, it allows us to 

judge whether or not the fits are statistically significant
7
. It is rare for the true distribution of the sampled data to be 

the same as the hypothesized (fitted) distribution function. In many goodness-of-fit tests using sampled data, we 

tend to find that the hypothesized distribution does not fit the data at a level of statistical significance if the sample 

size is large enough. In our work, the sample size is large. For this reason, we primarily use the χ
2 

test statistic to 

compare the fit of the distributions against each other. 

   The chi-square test is a goodness-of-fit test that compares the distribution of observed data with a parametric 

distribution
8
. The null hypothesis is that the data are from the considered parametric distribution. The chi-square (χ

2
) 

test statistic is computed as 

 

 
 

 where i is the bin number, M is the number of bins, Oi are the observed occurrences and Ei are the occurrences 

expected from a given distribution
5
. An important consideration in the chi-squared test is the number of bins to use. 

We selected three different numbers of bins to evaluate: Log2 (N)—Sturges’ rule of thumb
9
—where N is the number 

of samples for either the 15-minutely or hourly interval, and a ±3 bin sensitivity to this number of bins.             

(1) 
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   Values with expected frequencies less than or equal to five are ignored because the chi-squared approximation 

may not be reliable. 

   The 15-minutely data sets contain 35,136 samples. Following Sturges’ Rule of Thumb, there should be 15 bins. 

We calculated the fit of the distribution using 15 bins, and then again using 12 and 18 bins to consider the ±3 bin 

sensitivity. The hourly data sets contain 8,784 samples. Again following Sturgs’ Rule of Thumb, there should be 13 

bins. We calculated the fit of the distribution using 13 bins, and then again using 10 and 16 bins to consider the ±3 

bin sensitivity. We then ranked the distributions in order according to the chi-square test statistic. A lower chi-square 

value indicates a better fit to the data. Finally, the χ
2 

values were tested for their statistical significance, which is 

based on the sample size of each data set
10

. 

 

 

5. Results 

 
Tables 2 and 3 show the chi-square test statistics for Seattle and San Diego, respectively.  The distribution with the 

lowest χ
2 
value is in bold. Table 2 shows that the Weibull distribution is the best-fit distribution for the Seattle. The 

hourly result in the 13-bin calculation had the lowest chi-square value. Table 3 shows that the Generalized Extreme 

Value distribution is the best-fit distribution for San Diego. However, there is one exception. The lowest chi-squared 

value for 10 bins, of the hourly data is the Inverse Gaussian distribution. In general, the results were consistent 

regardless of the number of bins chosen. 

 

Table 2: χ
2
 test statistics for Seattle 

 
 

 

 

 

 

 

 

 

 

 

 
Table 3: χ

2
 test statistics for San Diego 

 

 

 

   Figures 7-10 are the histograms of the 15-minutely and hourly intervals of Seattle and San Diego shown with the 

best fitting distribution for each case. The PDFs for the data are as expected, with a unimodal peak that is positively 

skewed. Visually, they appear to be reasonable fits to the data. 

  

 
Bins Weibull Gamma Log-normal GEV 

15-minutely 

12 1050 1276 2266 3173 

15 1476 1554 2397 3306 

18 1855 1825 2501 3487 

Hourly 

10 364 415 605 850 

13 340 383 607 856 

16 445 474 636 887 

 
Bins GEV 

Inverse  

Gaussian 
Log-normal Log Logistic 

15-minutely 

12 6216 6380 7137 7700 

15 5889 6354 7195 7594 

18 6101 6459 7280 7754 

Hourly 

10 1344 1222 1507 1770 

13 1611 1754 1953 2035 

16 1571 1664 1900 2034 
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Figure 7: Seattle 15-Minutely Charging Data with a Weibull Distribution 

 

 
 

Figure 8: Seattle's Hourly Charging Data with a Weibull Distribution 

 

   It is important to note that the Weibull distribution is a reasonably good fit for the Seattle Data.  

 

 
 

Figure 9: San Diego 15-Minutely Charging Data with a General Extreme Value Distribution 
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Figure 10: San Diego Hourly Charging Data with a General Extreme Value Distribution 

   Next, the statistical significance of the results was evaluated. This involved computing critical χ
2 

values. The 

values are a function of the number of bins and number of fit parameters of the considered distributions. Table 4 and 

Table 5 show the critical values of the best-fitting distributions for Seattle and San Diego. Tables 4 and 5 show that 

the critical values are rejected, thus rejecting the null hypothesis. This is as expected because the chi-squared values 

of the San Diego and Seattle were much larger than the critical values, in part due to the large number of samples. 

 

 

Table 4: critical values for Seattle 

 
Bins Dist. 

Critical  

Value 
χ

2
 Value Reject? 

15-minutely 

12 Weibull 17 1050 Reject 

15 Weibull 21 1476 Reject 

18 Weibull 25 1855 Reject 

Hourly 

10 Weibull 14 364 Reject 

13 Weibull 18 340 Reject 

16 Weibull 22 445 Reject 

 

 

Table 5: critical values for San Diego 

 
Bins Dist. 

Critical  

Value 
χ

2
 Value Reject? 

15-minutely 

12 GEV 16 6216 Reject 

15 GEV 20 5889 Reject 

18 GEV 24 6101 Reject 

Hourly 

10 Inv. Gauss 14 1222 Reject 

13 GEV 17 1611 Reject 

16 GEV 21 1571 Reject 
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6. Conclusions and Future Work 

 
This paper modeled electric vehicle charging profiles. The chi-squared test can be used to recommend a parametric 

distribution to model the charging data collected in the San Diego and Seattle areas. San Diego’s best-fit distribution 

is the Generalized Extreme Value distribution. Seattle’s best-fit distribution is the Weibull distribution. These 

distributions are based on the Sturges’ Rule of Thumb bin count. We believe that the parametric distributions fit the 

data reasonably well, based upon the inspection, probability distribution functions and the χ
2
 values, even though the 

fit was not statistically significant. Time of use pricing makes also makes a difference in the shape of the graph 

because the charging supports smart coordinate charging on the grid. In the Seattle data, the load profile followed a 

smooth curve, which varied over a narrow range of power consumption. In the San Diego area, the energy 

consumption was tightly compressed into a smaller time window because of the time of use charging feature. 

   This research includes analyzing the compilation of the entire hourly data set for each region, but future work 

includes creating time dependent models. In other words, separating the data sets into morning, afternoon and 

nighttime and evaluating the parametric distributions for each time set.  
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