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Abstract 

 
Our research is part of a larger program to measure the water content in Martian clouds over diurnal, seasonal, and 

interannual timescales. This requires recovering a surface spectral model independent of the atmospheric spectral 

response. This is done using Principle Component Analysis (PCA), which has been shown to be fairly uniform 

across all timescales. Much of the data used come from ground-based near infrared (NIR) imaging; however, some 

of the data were uncalibratable due to the absence of comparison standard-star measurements. To determine if the 

data were still useful, we tested three normalization schemes: data mean, data median, and spot-spectra. We then 

preformed PCA on the normalized data to look for trends in the eigenvectors. The primary question being: are the 

PCA results still uniform even in uncalibrated data? We present here the results of our consistency analysis. Most of 

it was done through simple observations of the graphs of the PCA eigenvectors of the different normalizations. We 

find the mean and median normalizations show too much variability across all time scales and so are considered less 

superior in comparison to the spot-spectra normalized data, which showed much greater uniformity over time. We 

will supplement our qualitative analysis using a quantitative measure of uniformity based on the average chi-squared 

value between eigenvectors and their median—the greater the average, the more non-uniform they are. Our research 

shows that data previously determined uncalibratable due the absence of a comparison star may still be useful in 

further research. This will allow us to extend the study of Martian clouds to days of less-than-ideal observing 

conditions. 
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1. Data 
 

The data for this project are ground-based spectral images taken at the NASA Infrared Telescope Facility (IRTF) 

atop Mauna Kea, Hawaii during the oppositions of 1997 and 2001.  The instrument used was the NSFCAM, a 

256×256 InSb near-infrared camera; we made use of its a circular variable filter (CVF) that allowed us to acquire 

narrow-band (Δλ/λ≈1%) spectrophometric images.  Table 1 presents some details of the data including the date 

the images were taken, the spectral sets from that used, the apparent size of Mars at the time in arcseconds, and the 

solar longitude of Mars.  Solar longitude is just the position of Mars in its orbit and tells us what the local season is; 

LS = 0° is the northern spring equinox, LS = 90° is the northern summer solstice, etc. 

   In order to be able to model the data and recover the ice abundances in Martian clouds, the data must be calibrated 

so as to remove the effects of Earth’s atmosphere on the spectra and to convert instrumental response values to 

actual flux.  Normally Earth’s atmosphere can be removed by comparing the images to those of a close-by star of 

known magnitude. The idea is that the Earth’s atmosphere will distort the star’s light in the same way it does the 

light from Mars, so by seeing how the light from the star is distorted we can correct the effect on the Martian data.  
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Unfortunately in some of the data there was no comparison star present, so the data from those dates is 

uncalibratable. The question we were addressing in this project is whether or not these data could be calibrated by 

other means and therefore still be useful in later analysis. 

 

Table 1.  Details of Mars observations used in this project. 

Date Set(s) Size (″) LS 

16 FEB 1997 1 12.2 79 

17 FEB 1997 4 12.3 80 

21 APR 1997 1–6 12.4 107 

08 MAY 1997 1–4 10.9 115 

30 JUN 1997 1–2 7.5 140 

16 JUL 1997 1–2 6.9 149 

18 MAY 2001 3–7 17.2 163 

19 MAY 2001 1–7 17.4 164 

 

 

2. Procedure 
 

We chose to attempt data normalization, a relative calibration scheme.  We normalized the uncalibratable data in 

three different ways: mean normalization, median normalization, and spot-spectra normalization.  In the first case, 

we simply divided all areas of Mars by the average value of the visible disk.  In the second case, we did the same but 

used the median value of the visible disk; we believed this would give a “better” idea of what a typical Mars spot 

was than the mean as it will be less affected by extremes caused by the Martian poles.  In the third case we picked a 

particularly bright, non-cloud-covered, area of Mars and divided the spectra of every point by the data from this. 

   The primary test of how well each normalization scheme worked is to run it through the initial analysis program 

and compare the consistency of the results.  We expect, based on previous work
1, 2

, that the results from this step 

should be relatively consistent from date to date and not vary across seasons. 

 

 

3. Principal Component Analysis 
 

We observed Mars across 32 (or 105 in a few cases) individual wavelengths in the near-infrared (1.5–4.1 µm), 

however the brightness at each wavelength is not independent of the brightness at any of the others—they are 

correlated due to the fact that real substances typically have several characteristic absorption bands.  These spectral 

data can be envisioned as a 32-dimensional plot, where each dimension is a wavelength, so every point on Mars 

would be plotted in this space based on its coordinate value (i.e. brightness) in each dimension.  However, because 

the brightness may be correlated across wavelengths, this is a non-orthogonal data space. In order to make sense of 

this data cloud we use a linear algebra technique called principal component analysis (PCA) that takes our 32 

dimensional non-orthogonal space and transforms it into a 32-dimensional orthogonal space. It does this by finding 

the “direction” of greatest variance through the data cloud and assigns that as a new dimension.  It then repeats the 

process 31 more times with each subsequent direction having less variance than the previous one, and restricted to 

being orthogonal to all the previous ones.  In linear algebra this is a classic eigenvalue problem; the new dimensions 

are the eigenvectors of the data variance/covariance matrix.  Previous work
1, 2 

found that the first four dimensions 

(eigenvectors 0–3) account for over 97% of the total variance in the data; in other words, the remaining eigenvectors 

4–31 contain no valuable information and we can constrain our analysis to the first four.  Thus, PCA reduces the 

complexity of the problem significantly. 

   Because the new dimensions describe the variation of the data, eigenvectors 0–3 each represent a “trait” of the 

Martian spectra—these traits appear to be consistent over time
1, 2

.
 
Eigenvector 0 represents overall near-infrared 

brightness, eigenvector 1 represents cold/iciness, eigenvector 2 represents large-scale geology, and eigenvector 3 

represents small-scale geology. These interpretations can be seen in figure 1; e.g. eigenvector 0 is bounded by the 
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brightest and darkest regions, eigenvector 1 is bounded by the cold, ice-covered, north polar region and a central, 

local-noon, dark, warm region.   

   If the normalized data shows similarly consistent graphs for these eigenvectors over time we can say we have 

obtained a true model of the Martian surface independent of the Martian atmosphere, and can then span the entire 

surface and disregard it in future research.  

  

 
 

 

 
 

Figure 1. Areas of Mars (top) represented on a plot of eigenvector 0 vs eigenvector 1 (bottom) showing the 

correlations of specific regions and PCA cloud vertices/endpoints implying the trait interpretations noted in the text. 
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4. Results 
 

In the mean normalization the 2001 data usually grouped very closely together, but when comparing the 2001 data 

to the 1997 data within the same eigenvector it is difficult to say that they are consistent.  This is best shown with 

the mean normalized graphs of eigenvector 2 (figure 2). There is not even a hint of similarity when comparing the 

2001 dates to the 1997 dates; so we can say that the eigenvectors are not consistent over time and therefore the data 

has no real meaning. We can say the 1997 dates are inconsistent because even though they are spread out over 

several months—as opposed to a single day in the 2001 dates—previous research has shown
1,2

 that the eigenvectors 

should not vary with the seasons.  

 

 
 

 
 

 Figure 2. Mean normalized eigenvector 2 for 2001 (top) and 1997 (bottom)  
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   The median normalization eigenvectors were also inconsistent over time, as seen when comparing eigenvector 0 

plots. As in the case of the mean normalized data, the 2001 dates are consistent within themselves, but when 

compared to data from 1997 there is no true distinguishable trend (figure 3). However the median data still follows a 

general trend in eigenvectors 2 and 3 (figures 4), so we are hesitant to rule it out completely.  

 

 
 

 
 

Figure 3. Median normalized eigenvector 0 for 2001 (top) and 1997 (bottom) 
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Figure 4. Median normalization in eigenvector 2 (top) and eigenvector 3 (bottom). While there are obvious 

outliers the graphs follow a general trend.  

 

   Finally, we look at the spot-spectra normalization. In graphs of eigenvector 1 we can see that data follows the 

same general trend in both sets of dates (figure 5). There a few clear outliers in the 1997 data, but the overall shapes 

are similar.  The pattern is better seen when graphed over all dates in figure 6. 
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Figure 5. Spot-spectra normalized eigenvector 1 for 2001 (top) and 1997 (bottom) 

 



1056 
 

 
 

Figure 6: spot-spectra normalized eigenvector 1 graphed over all dates. There is an easily recognized trend 

with only a few outliers 

 

   While the spot-spectra normalized data was the best of all three there were several inconsistencies. For example, 

while the graphs had similar overall patterns across dates they still tended to group more closely within the year they 

were taken. This can be seen in the graphs of eigenvector 2 (figure 7).  The graph on the top shows eigenvector 2 

graphed over all dates, and though there are several very prominent outliers, it is easy to see an overall trend. 

However, when we use the same graph, but group each set of dates by color, we can see that the graph really trends 

differently based on the year the data was taken.  
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Figure 7. Spot-spectra normalized eigenvector 2 graphed over all dates in one color (top) and with 2001, 1997, and 

94-96 dates separated by color (bottom) 

 

 

5. Future Work 
 

The outlying data are a concern—if these are truly outliers, as in there is some reasonable explanation for the 

differences based on, say, observing conditions, it is less problematic.  But if they truly represent real differences, it 

will mean that there is no way to calibrate the data in a relative sense and still analyze them. One possible 

explanation is the inclusion of the Martian poles in our data. The north and south poles of Mars are very icy, which 
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means they reflect a lot of light and are therefore very bright. Their brightness, however, is not representative of the 

rest of the Martian surface and might be detrimentally affecting the analysis. Another issue throughout all of our 

normalizations was the inclusion of data from 1.9–2.4 µm; this is because Mars has a mostly carbon dioxide 

atmosphere, and carbon dioxide has a strong 2 µm absorption band.  Atmospheric gas absorption is a non-linear 

process, and all of our work up to this point has been based of the fact that PCA is a linear technique. As we move 

forward with our research we will try to reduce the outliers by removing either or both the poles and the 2 µm band.  
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