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Abstract 
 

Serving as an integral component of particle physics, the anomalous magnetic moment of an elementary particle is often 

used as a precision test of the widely accepted Standard Model of particle physics. While the theory successfully predicts 

the magnetic moment of certain particles such as the electron, recent measurements conducted at Brookhaven National 

Laboratory indicate that the experimental observation of a muon’s g-factor deviates from the theoretical value by 3.4 

standard deviations. This unexpected outcome has caused quite a deal of excitement in the particle physics community as 

the divergent value suggests the possible existence of physical laws beyond the scope of the Standard Model. Seeking to 

confirm or debunk this possibility, Fermi National Accelerator Laboratory will run a higher precision iteration of the 

Muon g-2 project which will deliver the definitive experimental value of the muon’s g-factor on the order of .14ppm. In 

order to attain this desired level of precision the implementation of a high resolution straw-tube drift chamber will be 

used as the primary particle tracking source. This cutting-edge particle detector will be subject to a high vacuum 

environment and certain quality control procedures have been designed in an attempt to minimize the possibility of a 

critical failure (i.e. contamination of the regulated vacuum environment). Northern Illinois University is involved in this 

quality control procedure and will oversee the assembly of the straw-tube tracker modules. Creep, leak, resistivity and 

other tests vital to the assembly of the prototype drift chamber have already been put into action with successful results. 

One of these methods includes the study of a non-contact approach for measuring the tension of the Mylar straw-tubes. 

By vibrating the straw-tube inside of a known magnetic field with the use of a loudspeaker, the tension of the straw-tube 

can be approximated by the relationship of the resonant frequency and the set tension. Further collaboration between 

Fermilab and Northern Illinois University hopes to automate these quality control systems and implement them during 

the proton test beam runs in 2014. 
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1. Introduction: 
 

Often referred to as the heavier cousin of the electron, the muon is a second generation elementary particle with a rest 

mass roughly 207 times greater than that of the electron.
1
 As a result of this additional mass, the muon is not inherently 

stable and only has a rest frame lifetime of 2.2 µs.
1
 Although a few microseconds may seem quite brief, it is actually 

more than enough time to perform experiments regarding the muon’s interaction with other particles and fields.  

   One of these experiments is the Muon g-2 Experiment (E-989). Building on the results from an older muon experiment 

(E-821) conducted at Brookhaven National Laboratory; the new Muon g-2 experiment will measure the anomalous 

magnetic moment of the muon to a groundbreaking degree of precision (.14ppm).
2
 The outcome of this experiment will 

not only yield the most precise measurement of the muon’s magnetic moment, but it will also shed light on the measured 

value published by E-821, 𝑎µ
𝑒𝑥𝑝

= 116592089 × 10−11, which differed from the theoretical value predicted by the 

Standard Model, 𝑎µ
𝑆𝑀 = 116591802 × 10−11, by 3.4σ.

2
 Should the new experiment at Fermilab yield a value that 

diverges from the Standard Model by 5σ (deviation required for a scientific discovery), the discovery of new physics, or 

physics beyond the Standard Model, would definitely gain credence.
2 

1.1 g-2 
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Before moving on to the specifics of the tracker, it is important to first detail what is being measured. Serving as the ratio 

of a particle’s magnetic moment to its angular momentum, the gyromagnetic ratio (g) is analogous to the magnetic 

moment of an elementary particle.
3
 Utilizing standard electrodynamics, the classical magnetic moment of a particle 

rotating around an axis can be approximated through the following equation, 

 

 

      𝝁 =
1

2
𝑞𝑣𝑟                                                                                                                                                                (1) 

 

 

Substituting in angular momentum, 𝐿 = 𝑚𝑣𝑟, we get the following value,                                                                                                                                                                   

 

 

      𝝁 =
𝑞𝑚

2
𝑳                                                                                                                                                                 (2) 

 

 

   Applying these principles to quantum mechanics, one would expect that spin ½ particles (e.g. electron, muon, etc.) 

would have an angular momentum of,  

 

 

      𝝁 =
𝑒

2𝑚
𝒔                                                                                                                                                                 (3) 

 

 

however, considering that the spin of a particle is not comparable to the classical example above, but a phenomenon of 

quantum mechanics, it becomes clear that the introduction of a gyromagnetic ratio (g) is necessary. Thus, the magnetic 

dipole moment becomes, 

 

 

      𝝁 = 𝑔
𝑒

2𝑚
𝒔                                                                                                                                                              (4) 

 

 

   From this equation we can now derive the dimensionless g-factor (synonymous, but different from the g-ratio) for a 

muon, 

 

 

      𝝁 = 𝑔
𝑒

2𝑚µ
𝒔                                                                                                                                                            (5) 

 

 

where μ is the magnetic moment from the muon’s spin, mµ is the mass of the muon, s is the spin angular momentum and 

e is the charge of the muon. Alternatively, for reasons that will become clear in the section below, the g-factor of the 

muon can also be displayed as aµ, or the anomalous magnetic moment of a muon, 

 

 

      𝑎µ =  
𝑔−2

2
                                                                                                                                                                (6) 

 

 

Here it should be noted that 2 is subtracted from g due to the fact that the value of g is approximately, but not exactly, 2.
1, 

3, 6 

 

1.1.1 measuring the g-factor  
The process of measuring the g-factor begins with a beam of protons slamming into a dense target and producing pions. 

These pions decay and yield muons which are then fed into a large magnetic storage ring (Figure 1) where they travel at 

relativistic speeds until each muon decays into a pair of neutrinos and a positron.
1,6

 Being much lighter than its parent 

particle, the positrons drift towards the inside of the storage ring and interact with the straw tube trackers and 
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calorimeters stationed along scallops on the inside wall of the ring (Figure 2). Through the information obtained from the 

direction of the emitted positrons, the spin vector (difference between Larmor frequency and cyclotron frequency) of the 

precessing muons can be extrapolated through the following formula, 

 

 

      𝝎𝒂 =
𝑒

𝑚𝑐
[𝑎µ𝑩 − 𝑎µ

𝛾

𝛾+1
(𝜷 ∙ 𝑩) + (𝑎µ − (

𝑚

𝑝
)

2

) 𝜷 × 𝑬]                                                                                       (7) 

 

 

where e is the charge of the muon, m is the mass of the muon, aµ is the muon’s anomalous magnetic moment, p is the 

momentum of the muon, B and E are the magnetic and electric fields used to store the muons and 𝛾 is the Lorentz 

factor.
1
  

 

   While the equation above may look a bit complex, it should be noted that by setting the muon’s velocity to be 

perpendicular to the magnetic field, as well as setting filters on the calorimeters to only accept positrons emitted by 

“magic momentum” muons (𝑝𝑚𝑎𝑔𝑖𝑐 =
𝑚

√𝑎
 so that the third term becomes (𝑎µ − 𝑎µ)𝜷 × 𝑬), the second and third terms are 

effectively canceled out, thus yielding the much simpler reduced formula for 𝝎𝒂, 

 

 

      𝝎𝒂 =
𝑒

𝑚𝑐
(𝑎µ𝑩)                                                                                                                                                      (8) 

 

 

and finally, solving for our desired variable 𝑎µ, 

 

 

      𝑎µ =
𝑚𝑐𝝎𝒂

𝑒𝑩
                                                                                                                                                               (9) 

 

 

   Given that the m, c and e are all well measured constants and that the magnetic field (B) within the storage ring is 

extremely uniform, all that is needed to find the anomalous magnetic moment of the muon is the precession frequency 

(𝝎𝒂) which can be derived from the information obtained by the tracked positrons.
1
  

 

 
 

Figure 1. Muon storage ring
1 
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1.2 Straw Tracker 

 
One of the main changes to the Muon g-2 Experiment will be the introduction of a straw tube tracking system. The basic 

setup of a straw tracker consists of several stations of Mylar straws (Figure 3) positioned on the interior wall of the muon 

storage ring (Figure 2). As the muons decay inside of the storage ring they will emit charged particles (e.g. positrons) 

which will drift towards the center of the ring and traverse the straw tube modules (Figure 3). Upon passing through a 

single straw tube, the charged particle ionizes the gas inside of the straw, thus creating free electrons which drift to a wire 

running inside each straw and create an electrical signal. This signal is then registered as a “hit” which can then be 

digitized, analyzed by a tracking algorithm and ultimately traced back to the origin of the decaying muon (thus providing 

the information to calculate the g-factor as detailed in the section above). The use of these straw trackers will be 

invaluable to the g-2 project as they will account for over 50% of the improvement in precision over E-821.
4 

 

1.2.1 tracker specifications 

 
Considering that straw trackers come in a variety of different shapes and sizes, it is important to review a few of the 

technical specifications of the drift chamber to be used in the g-2 project. The individual straw tubes used in the tracker 

modules are 5mm in diameter and approximately 12 cm in length (the final length has not yet been decided) and are 

made of a Mylar material coated with thin layers of gold and aluminum.
8
 The inside of the straws is filled with a mixture 

of argon and carbon dioxide gas (80:20) pressurized at 1atm and each individual straw has a single 25 µm thick wire 

running concentrically through its interior.
8
 These straw tubes are then arranged in a “staggered” geometry pattern which 

optimizes hit detection and glued into their corresponding tracker (modules vary in size from 8, 16 and 32 straw count).
5
 

Finally, the straw trackers, complete with accompanying electronics are placed inside of the large muon storage ring in a 

formation similar to the setup in Figure 2. 

 

 

.  

 

Figure 2. Arrangement of straw trackers and calorimeters inside of the muon storage ring.
7 

 

 



1150 
 

 
 

Figure 3. Straws tracker module (32-type).
8 

 

 

2. Methodology and Materials 

 

2.1 Quality Control Tests 

 
In order to ensure that the straw trackers run accordingly, several quality control tests have been devised to aid during the 

production phase of the tracking modules. Properties including resistivity, tension measurement and creep have been 

tested on the Mylar straw tubes as well as tungsten wire by the NIU Muon g-2 team; however, this paper will focus only 

on the two methods used to study the behavior of straw tension. 

 

2.2 Straw Tension Tests 

 
The tensioning of the straws inside of the tracker module serves not only to mitigate the expansion of the straws once 

inside the vacuum environment of the storage ring, but to also to keep the tubes from stretching or deforming during 

production.
5
 In a method similar to the wire tension tests, an indirect method of tension measurement was devised in 

which a tensioned straw suspended in the middle of a large c-magnet is vibrated by a loudspeaker,  thus creating a 

measurable EMF (Figures 4 and 5). The loudspeaker sweeps through various frequencies (0-2000 Hz) and the resulting 

signal is read by an oscilloscope. This signal is then processed via a NI LabView data acquisition VI and the largest Vpp 

amplitude, which correlates to the resonant frequency, is collected (Figure 6).  

   While it might seem feasible to check the resonant frequency with an equation used to approximate the tension in a 

solid wire, 

 

 

      𝐹 =
1

2𝐿
√𝑇/𝜌                                                                                                                                                         (10)  

 

 

it turns out that due to the straw length being too short, modeling the tension of the straw using the equation above would 

yield erroneous results.
10 
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Figure 4. Setup for indirect straw tension test (acoustic method) 

 

 
 

Figure 5. Close up of indirect straw tension test 

 

Figure 5. One should take note that the loudspeaker and NI ELVIS II prototyping board (not pictured) were supported by 

wooden surfaces in attempt to mitigate the effects of radio frequency interference. 
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Figure 6. Oscilloscope reading displaying a resonant frequency signal for a straw tensioned at 3N 

 

Figure 6. This image was taken using the integrated oscilloscope function of the NI Elvis II data acquisition tools.
9
 The 

3.471 Vpp is representative of the observed signal when vibrating a straw tube at its resonant frequency. Not pictured are 

the various harmonics along with the flat intervals preceding and following the resonant frequency.  

 

   As a result of the aforementioned phenomenon, another direct tension method was devised as a means of checking our 

experimental method for accuracy. This setup was quite simple as it was composed of a forcemeter being fastened to one 

end of the straw and utilizing a stretching rack to slowly increase the straw-tube’s linear displacement. This method, like 

the indirect tension method, also utilized an ohmmeter to measure the resistance of the straw in between trials (increase 

in resistance signaled the deformation and destruction of the straw tube). 

 

 
 

Figure 7. Direct contact tension setup 
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3. Results 

 

3.1 Direct Contact Tension Tests 

 
The direct contact tension test (forcemeter) was able to successfully observe the relationship between linear displacement 

and straw tension. 

 

 
 

Figure 8. Linear Displacement (mm) vs Tension (N) for a single straw tube 

 

Figure 8. As seen in the figure above it is clear that linear displacement and straw tension share a linear relationship with 

approximately .1mm change in displacement being proportional to 1N of tension. It should be noted that no readings 

higher than 6N were performed on the straws as considerable, permanent increases in resistivity (~.5Ω) were observed. 

 

3.2 Indirect contact tension tests 

 

 
 

Figure 9. Tension (N) vs Resonant Frequency (Hz) for a single straw tube 
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Figure 9. Like the direct tension test, the indirect tension test (acoustic method), also produced a linear model that related 

tension with resonant frequency (i.e. resonant frequency and linear displacement should also be linearly related). Unlike 

the previous method, however, the acoustic method did not have as high of an R
2
 value (.9575 < .9999) due to the 

presence of a reoccurring “dip” in frequency at the 1N mark. Considering that the resonance behaves linearly before and 

after that point, we have reason to believe that the dip may be due to a mechanical property of the straw (e.g. yield point), 

however, more research on a larger sample of straws (the above graph is an average of three straws) would be needed to 

prove this theory. 

 

 

4. Discussion 

 
Upon the collection of the straw tension data it became clear that due to the linear behavior displayed by both the indirect 

and direct tension tests both of these methods could be used to gauge the tension of a single straw tube. As a result of 

limitations set by the inherit design of the straw tube tracker module (Figure 3), however, it also became apparent that 

both of these methods would be restricted to perform only certain functions during the various stages of the Muon g-2 

Experiment. 

   The direct tension test will most definitely be used during the construction phase of the tracker modules as the 

invaluable relationship between linear displacement and set tension (.1mm ∝ 1N) will allow the straw tracker team to set 

a tension that will not only account for the expansion of the gas filled straw tubes, but that will also take into 

consideration the effect of long-term creep (loss of tension due to deformation). Unfortunately, this method will have no 

use beyond this phase of the experiment as the straws in the tracker module will be glued into place (i.e. performing a 

pull test with a forcemeter would not be possible). 

   As for the indirect tension test, the results are inconclusive. While our data (Figure 9) demonstrates that it is possible to 

approximate the tension in a single straw by observing its resonant frequency, obtaining this data on a stack of tubes, as 

is the case on the tracker modules, may not be feasible. The main case for this argument is that the sound waves from the 

loudspeaker would only be able to vibrate the straws on the outer edges and thus obtaining a signal for the innermost 

straws would be far more difficult due to wave interference. Furthermore, even if the indirect tension method could 

single out a loose straw during the post-production phase of the experiment, it may prove inconsequential due to the fact 

that a single straw cannot be replaced as it is glued in place (entire module would have to be changed). 

   In spite of the aforementioned limitations, it is certain that the devised tension tests will be important during the 

construction of the straw tube modules and will play a part in the quality control of the experiment. Furthermore, should 

there be any further design changes before the start of the building phase; it is reassuring to know that we have various 

means of measuring the straw tension. 
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