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Abstract

This paper works off of previous research in the field of mathematics applied to voting theory; specifically,
the investigation of the ways to "weight" a voting profile, or, in other words, how to score a particular ballot in
a vote. This question is important from a practical standpoint in considering the effectiveness or objectivity
of voting procedures. This paper looks at this issue from a completely mathematical standpoint, using
primarily linear algebra to analyze the way a weighting procedure affects a vote, and will sketch the proof of
an important result using linear algebra, namely that there are mathematically infinite different ways people
can vote that, when coupled with a specific weighting system, could lead to a specific numerical result.
However, this particular conclusion is not always applicable to practical voting situations, and therefore
this paper shows what these theoretically infinite ways people could vote actually means in a real world
scenario. Specifically, given a set of weights and results, there are a specific set of cases where there is a
particular, finite set of voting profiles that connect the two. Furthermore,this paper shows how to move
between statements we can make about the cardinal (in a number of points assigned to each candidate
based on the voting) ranking of candidates to the ordinal ranking of candidates, given a real world setting
where certain cardinal designations may be impractical or impossible. While this paper will only consider
the mathematics behind this voting theory, the results will certainly be of interest to anyone interested in
ensuring that voting accurately represents the interests of the parties involved, as these results will emphasize
that the selection of a weight system for a vote is often more important than the actual vote itself.
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1 Introduction and Motivation

Voting is a fundamentally mathematical concept; the mathematical field of voting theory was pioneered by
Donald Saari. Building off Saari’s work, which looks at a geometric approach to voting theory, Daugherty,
Eustis, Minton, and Orrison apply representation theory to the system that Saari has developed.2 In this
paper, we reexamine the results of Daugherty, Eustis, Minton, and Orrison by looking at a more linear
algebra based approach, and by recasting some of their theorems in more real-life scenarios.

One of the primary motivations for studying voting processes with a mathematical approach is the
fundamental ambiguity that can arise from voting itself. To illustrate this phenomenon, we turn to a classic
example from Donal Saari.1 We can imagine a vote by a 15-member department between beverage options
– in this case, milk, wine, and beer – for the departmental picnic. The vote is fully ranked – i.e., every voter
ranks all three candidates in order of preference. Imagine that our vote goes like this:
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Count 6 5 4

Preference
Schedule

milkwine
beer

  beer
wine
milk

 winebeer
milk

 .

Now we can make some observations about this vote. First, we can see that milk is the most popular first
choice– six people chose milk first, five people chose beer first, and four people chose wine first. However,
milk is also the most popular last choice – nine people preferred milk the least, whereas only six people
preferred beer the least, and nobody chose wine the least. Should milk win, or lose? We have this ambiguity.
Imagine that we decide milk is the winner – and yet, due to an ironic turn of events, milk is unavailable.
Then should the department pick beer or wine? More people chose beer as a first choice than wine – and
yet, ten people chose wine over beer, whereas only five people chose beer over wine. In a head-to-head,
wine would be the winner. Again, it is ambiguous who should win and who should lose. This fundamental
ambiguity is what motivates the idea of positional weighted voting procedures – while they do not completely
remove the ambiguity shown here, they do allow a systematic way for picking a winner and quantifying this
ambiguity.

2 Positional weighted theory basics

We begin our discussion of voting theory by fully defining the process of weighted positional voting. For a
fully ranked vote, voters rank candidates from most preferred to least preferred, just like in Saari’s example.
If we have n candidates, the voting is equivalent to choosing a column vector of size n, where the top entry
of the vector is the number of the first choice, the second entry of the vector is the second choice, et cetera.
For example, for three candidates, wine, beer, and milk, a fully ranked vote means that each voter picks one
of the following vectors:milkwine

beer

 ,

milkbeer
wine

 ,

winemilk
beer

 ,

winebeer
milk

 ,

 beer
milk
wine

 ,

 beer
wine
milk

 (1)

The idea of positional weighted voting, as outlined,2 is to assign a certain number of points for a first
place vote, a certain number of points for a second place vote, et cetera. For example, if we assign one point
for a first place vote, every time someone votes for a candidate in first place, that candidate receives one
point. At the end of the vote, the candidate with the most points is the winner.

There are many reasonable ways to set up a weighting system. For example a voting system could award
one point to first place and zero points to all other places, which would be a "winner-take-all" type system
of voting. On the other hand, a weighting system could also give one point to all places except last place,
which would be a "consensus" way of voting. A more descending-values type vote might assign two points
to first place, one point to second place, and no points to third place. There are infinite variations of the
different weighting systems.

Definition 1. A weighting vector, w, is the column vector that defines the weighting system of a vote such
that the jth column represents the number of points that the jth place receives.

The first element of the weighting vector is the weight for first place, and the second element of the
weighting vector is the weight for second place, et cetera. For size n = 3, if we wanted to give one point for
a first place, zero points for a second place, and negative one points for last place – note that we are free to

use negative values for point counts – we would use the weighting vector:

 1
0
−1

 .

Now, observe that all the vectors that the voters are choosing between are permutations of the original list
of candidates. Again, if we’re voting between milk, wine, and beer, then voting is the same as choosing one

of the permutations of the vector

milkwine
beer

. We now fix an order to the permutations (in the same way you
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fix an order for an ordered basis); for example, our order for n = 3 could be (1), (23),(12),(132),(123),(13).
Given this order, the order of our actual vectors is:milkwine

beer

 ,

milkbeer
wine

 ,

winemilk
beer

 ,

winebeer
milk

 ,

 beer
milk
wine

 ,

 beer
wine
milk

 .

Definition 2. A profile vector, p, is the column vector that encodes how many people voted for each
preference, in relation to the order of the preferences that we’ve fixed. The jth row represents the number
of people that voted for the jth preference in the fixed order.

The first element of the profile vector is the number of people that voted for the first preference schedule–
in other words, the first permutation in the list of permutations of the candidates, the second element of
the profile vector is the number of people that voted for the second preference, et cetera. Continuing with
our example of a vote between milk, wine, and beer, if we had 10 voters, imagine we have the profile:
p =

(
3 2 0 0 4 1

)T
. Then three people voted for our first preference, two people voted for our second

preference, four people voted for our fifth preference, and one person voted for our sixth preference.

Definition 3. From the weighting vector we generate the weighting matrix, Tw, such that the rows of Tw
correspond to the different candidates and the columns of Tw correspond to our orderings of the preferences;
Tw is then filled such that the ith, jth element is the number of points that the ith candidate receives under
the jth preference.

The matrix first element of the first row of Tw will be the number of points that our first candidate
receives under the first preference we’ve defined, aka the element of the weighting vector corresponding to
the first candidate’s position in that preference.

For our candidates milk, wine, and beer, we define the first row to correspond to milk, the second row
to correspond to wine, and the third row to correspond to beer. We define the columns to correspond the

preferences as we have listed them above. If, for now, we use the arbitrary weighting vector: w =

w1

w2

w3

 ,

then we generate Tw as follows:

w1 w1 w2 w3 w2 w3
w2 w3 w1 w1 w3 w2
w3 w2 w3 w2 w1 w1

 milk
wine
beer

Tw =

m
w
b

m
b
w

w
m
b

w
b
m

b
m
w

b
w
m

.

We can now notice that the weighting matrix Tw is actually the permutations of the weighting vector in
the same order as the fixed permutations of the preferences.

Definition 4. The results vector, r, is the column vector where the jth element corresponds to the points
awarded to the jth candidate, as ordered in the rows of Tw, candidate after a vote takes place.

If we conduct a vote between milk, wine, and beer, and find that milk has received ten points, wine has

received three points, and beer has received seven points, then our results vector is: r =

10
3
7

 .

This now brings us to the fundamental equation of positional vector voting:

Twp = r. (2)

What this tells us is that multiplying our weighting matrix by our profile vector gives us the results
vector.
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Example 2.1. While in some cases no matter what weighting system is used there’s a clear winner, there
are also many cases where selecting a weighting system determines a winner in and of itself. Here is an
example of one such paradox.

If we have a vote between three candidates, which we index one through three, where voters are asked
to rank these candidates from most preferred to least preferred, this is equivalent to asking our voters to
choose between the six permutations below, which we fix in this order:1

2
3

 ,

1
3
2

 ,

2
1
3

 ,

2
3
1

 ,

3
1
2

 ,

3
2
1

 .

Next we must determine our weighting system. We can define, as a basic, beginning step, first place to
receive one point, and last place to receive zero points, and use variable s for second place. Our weighting
vector is defined as:

w =
(
1 s 0

)T
From w, we can derive Tw, the permutations of the weighting vector in the same order as the permutations

of the candidates in the order we’ve fixed:

Tw =

1 1 s 0 s 0
s 0 1 1 0 s
0 s 0 s 1 1


For a given profile p, encoded as a column vector such that the entry in the ith row corresponds to the

number of people that voted for the ith voting vector, Tw(p) = r, where r is the results vector where the
score in the ith row corresponds to the total points assigned to the ith candidate.

Let p = (4 2 1 3 2 3)T . Then apply our fundamental equation of vector voting, r = Tw(p), to obtain

r =

6 + 3s
4 + 7s
5 + 5s

 .

If we go with a winner-take-all vote, we set s = 0, and r =

6
4
5

, candidate one is the winner. If we

go with a consensus system, we set s = 1, and r =

 9
11
10

, although candidate one won using the first

weighting system, he now comes in last, and candidate two is the winner. Finally, we could assign second

place points, but less than first place; for example, we could arbitrarily set s = .5, and r =

7.5
7.5
7.5

, in

which case we have a three way tie. As shown, given a fairly simple set of candidates and profile, with three
different reasonable weighting systems you can get three different results. Positional weighted voting doesn’t
eliminate the ambiguity in a vote– however, picking a weighting system allows us to select a winner.

3 Results regarding the weighting vectors

We will be viewing Tw as a linear transformation of vector spaces. Since Nn is not a vector space, our
results space and profile space must be Qn. Dougherty, Eustace, Minton, and Orrison make an important
observation.2 Namely, they show that since the results space can be decomposed into a weighted space
(the vector space spanned by the all-ones vector), direct summed with a sum-zero space (which includes all
vectors such that if you add all the elements of the vector together you get zero). Intuitively, we can see
that adding any multiple of the all-ones vector to a result will not change the order of the candidates at all.
What this means is that we can restrict the results space to sum-zero vectors with no loss of information
about the election itself. Since the results space lives in the span of the column space of Tw, and each column
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of Tw will have the same sum (since they are permutations of the same vector), this means we can restrict
our weighting vectors to sum-zero vectors with no loss of information as well. From this point on, when
discussing weighting vectors and results vectors, it will be assumed that these vectors are sum-zero.

This brings us to one of Dougherty, Eustace, Minton, and Orrison’s major results.2

Theorem 3.1. Let n ≥ 2, and let λ = (λ1, ..., λm) be a partition of n. Suppose that w1, ...,wk form a
linearly independent set of weighting vectors in Qm such that w̄1, ..., w̄k are sum-zero vectors. If r1, ..., rk are
any sum-zero results vectors in Qn, then there exist infinitely many profiles p ∈ Mλ such that Twi

(p) = ri
for all i such that 1 ≤ i ≤ k.

For a fully-ranked vote, what this means is that given any sum-zero results vectors and any linearly
independent sum-zero weighting vectors, there are actually infinitely many profiles that will simultaneously
connect the weighting vectors to the results via our fundamental equation Twp = r.

Dougherty et al prove their theorem using an argument from representation theory.We prove their same
theorem using only linear algebra tools. We do a proof by contradiction. Since Tw contains more columns than
rows, we show that there are either infinitely many solutions or no solutions to connect linearly independent
weight vectors to a set of results. We assume that there are no such solutions. This implies a linear
dependence between the rows of our matrix, which, with a little work, we show implies a linear dependence
between the initial weighting vectors themselves. This is, of course, a contradiction, as Theorem (3.1)
assumes that these weighting vectors are linearly independent.

4 Reversal of Theorem 3.1

Now that we’ve have Theorem 3.1 – that for any set of linearly independent sum-zero weighting vectors and
any set of sum-zero results vectors, there are infinitely many profiles that connect these via our fundamental
equation – this leads to a natural reversal of the question: can any profile and results vector be connected by
choosing a weighting vector? Currently, we have restricted our considerations to three-candidate elections.

In order to look at this question, we first need to reverse our fundamental equation Twp = r so that we
can examine the weighting vector as an independent variable we can manipulate. We want to generate a
matrix Tp from the profile p such that we’ve reversed our fundamental equation Tpw = r.

Definition 5. From the profile p we generate our profile matrix Tp such that the rows of Tp correspond to
the candidates and the columns of Tp correspond to the positions, i.e. 1st, 2nd, 3rd, etc., and the ith, jth
element of Tp corresponds to the number of voters who voted for the ith candidate in the jth position on
their ballot.

The first element of the first row of Tp will be the number of people that voted for the first candidate as
their first-place choice.

To see how this will work, using candidates wine, beer, and milk, and the ordering given in equation (1),
suppose we’re given the generalized profile:

p =
(
p1 p2 p3 p4 p5 p6

)T
.

Then we can see that (p1 + p2) people voted for candidate one in first place; (p3 + p4) voted for candidate
two in first place; (p5 + p6) people voted for candidate three in first place, et cetera. We generate Tp in this
way:

p1 + p2 p3 + p5 p4 + p6
p3 + p4 p1 + p6 p2 + p5
p5 + p6 p2 + p4 p1 + p3

 milk
wine
beer

Tp =

1st place 2nd place 3rd place

.

Now with this definition of our profile matrix Tp we can define our reversed fundamental equation of
positional weighted voting:

Tpw = r. (3)
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Now we can multiply our profile matrix by our weighting vector to get our result.
We also now know that Twp = Tpw.
To examine our reversal of Theorem 3.1, we’re going to simplify the mechanics of equation (3). We look

at the equation:

Tpw =

p1 + p2 p3 + p5 p4 + p6
p3 + p4 p1 + p6 p2 + p5
p5 + p6 p2 + p4 p1 + p3

 w1

w2

−w1 − w2

 .

Notice that we can simplify this equation by eliminating the last column of Tp, the last row of w, and
adding the negation of the third column of Tp to every other column of Tp. We now verify that these are
equivalent: p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5
p5 + p6 − p1 − p3 p2 + p4 − p1 − p3

(w1

w2

)

=

(p1 + p2 − p4 − p6)w1 + (p3 + p5 − p4 − p6)w2

(p3 + p4 − p2 − p5)w1 + (p1 + p6 − p2 − p5)w2

(p5 + p6 − p1 − p3)w1 + (p2 + p4 − p1 − p3)w2


= Tpw.

We see that these are equivalent. As a reminder, our reversed question is: if we’re given a profile, can
we find a weighting vector to ensure a given result. Now we see that this is equivalent to asking: for a given
result, is that result in the column space of our matrix:p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5
p5 + p6 − p1 − p3 p2 + p4 − p1 − p3

 .

If our result is in the column space of this matrix, we see that we can then generate a weighting vector
to ensure our result, given that our weighting vector just takes a linear combination of the columns of this
matrix. We see then that, since our columns of this matrix are sum-zero, and our result is sum-zero, if the
two columns of this matrix are linearly independent then they form a basis for the sum-zero results space,
and thus the result will be in the column space. Therefore, we can get our result as long as columnsp1 + p2 − p4 − p6

p3 + p4 − p2 − p5
p5 + p6 − p1 − p3

 and

p3 + p5 − p4 − p6
p1 + p6 − p2 − p5
p2 + p4 − p1 − p3


are linearly independent. This will be true exactly when:

−p62 − p22 − p5p1 − p5p4 − p32 + p3p6 + p4
2 + p2p3 + p5

2 + p1
2 − p1p4 + p6p2 6= 0. (4)

We now observe three different types of profiles: profiles which only yield the zero result (i.e. both
columns of our matrix are zero), profiles which can yield only a result that is a multiple of a single vector
(i.e. the columns of our matrix are linearly dependent), and profiles which can yield any result (i.e. the
columns of our matrix are linearly independent). Now we’ll show that these three categories exist, and what
profile vectors in them look like.

For a profile to be in our first category, only yielding the zero result, both columns of our matrix must
equal zero: p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5
p5 + p6 − p1 − p3 p2 + p4 − p1 − p3

 =

0 0
0 0
0 0

 .

Solving for this gives us:
p1 = p4 = p5

p2 = p3 = p6.
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So we see that the profiles that can only give us the zero result are of the form: p =


a
b
b
a
a
b

 .

We can also look at vectors for which we can only find results that are multiples of a certain vector. We
know we cannot generate any result from a given profile if the following equation holds:
−p62 − p22 − p5p1 − p5p4 − p32 + p3p6 + p4

2 + p2p3 + p5
2 + p1

2 − p1p4 + p6p2 = 0.
Solving this equation, we find that our solutions are of the form:

p1 = 1/2 p5 + 1/2 p4 ± 1/2
√
−3 p52 + 6 p5p4 − 3 p42 + 4 p62 + 4 p22 + 4 p32 − 4 p3p6 − 4 p2p3 − 4 p6p2.

Our total profile space is six-dimensional; inside it is a five-dimensional subspace that we cannot fully
determine the results; and inside that is a two dimensional subspace whose results will only be the zero
subspace.

Note that, since our total profile vector space is of a greater dimension than our vectors which we cannot
determine the result from, the percentage of nice profiles, for which we can determine the full result, increases
at a higher rate than not nice profiles; therefore, as the number of voters goes to infinity, the percentage
of profiles which you can, as in the example previous, choose any result by determining a weighting vector
goes to 100. This actually seems to correspond fairly tightly with Doughterty et al’s Theorem 3.1, since the
profiles we can find under Theorem 3.1 can be of any size, and, therefore, in some sense, are allowed to be
infinitely big, implying an infinite amount of voters. By restricting the voter count, Theorem 3.1 would not
necessarily hold.

5 Reality?

We now have a question about our parallel results from Theorem 3.1 and its converse question. As per
Theorem 3.1, we know that we can find infinitely many profiles to connect a set of linearly independent
weighting vectors to any set of results. However, Theorem 3.1 actually only guarantees that the infinitely
many profiles that we can find are vectors of rational numbers. We know that the profile represents the
number of people that vote for a particular preference. This means that for a profile to be possible in the
real world, it should be a vector of integers. Not all of the profiles we are guaranteed mathematically under
Theorem 3.1 are actually realistic.

Likewise, we also examine the realism of answer to the converse of Theorem 3.1. We’ve shown that, for
some profiles (most profiles, as the number of voters increases), you can find a weighting vector to connect a
profile vector to a results vector. However, the weighting vector corresponds to the weights assigned to first
place, second place, third place, et cetera. You would never, in a reasonable vote, assign more points to last
place than to first. We have this criteria of reasonable weighting vectors such that the weighting vector’s
values must be in descending order.

Definition 6. For three candidates, a reasonable weighting vector is one such that

w1 ≥ w2 ≥ w3.

Like we saw with Theorem 3.1, only a subset of the weighting vectors we can find under this reversal
could actually be used in the real world.
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6 The reasonable results space

To illustrate an example of unreasonable and reasonable weighting vectors, we can revisit our example of a
profile from which you can generate any results. Recall:

p =


10
4
5
2
4
6

 , w =


8
49 r1 −

1
49 r2

6
49 r2 +

1
49 r1

− 9
49 r1 −

5
49 r2

 .

And we know that from this profile, the total possible results space includes all sum-zero results vectors,
as we can find a weighting vector for any given result.

However, imagine we want to get the result

r =

−1−1
2

 .

Then, as per our equation of the weighting vector:

w =


− 8

49 + 1
49

− 6
49 −

1
49

9
49 + 5

49

 .
From this, we can see very clearly that w3 is greater than w1 and w2. This means that under this

weighting scheme, we’d be giving more points to last place than to first or second – that system certainly
isn’t reasonable in a real world scenario.

In order to look solely at reasonable results, now we want to restrict our search to reasonable weighting
vectors. We can just impose the following inequality:

w1 ≥ w2 ≥ w3.

Which is, given this weighting vector:

8

49
r1 −

1

49
r2 ≥

6

49
r2 +

1

49
r1 ≥ −

9

49
r1 −

5

49
r2.

Remember that r1 is the total points awarded to Candidate 1, r2 is the total points awarded to Candidate
2, and the total points awarded to Candidate 3 must be −r1 − r2. Now that we have this inequality, this
forms a reasonable results space.

Definition 7. The reasonable results space is the space spanned by the results from all possible reasonable
weighting vectors.

We can graph the inequality we’ve found in our current example, setting r1 on the x-axis and r2 on the
y-axis.

For our nice profiles we can find this reasonable results space and look at it graphically in this way.

7 An observation looking at the results space

If we are looking at the results space graphically, for our three candidates, milk, wine, and beer, such that
r1 (equal to the total points awarded to milk) is on the x-axis and r2 (equal to the total points awarded to
wine) is on the y-axis, and r3 (equal to the total points awarded to beer) is known to be −r1 − r2, then we
can look at the portions of a graph such that each candidate is the winner; i.e., there is a portion of the
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Figure 1: A reasonable results space

graph that our first candidate, milk, is the winner; there’s a portion of the graph such that wine, our second
candidate, is the winner; and there’s a portion of the graph such that beer is the winner. The area that
would correspond to milk winning would be the area that solves the inequalities:

r1 > r2 and r1 > (−r1 − r2).

And the area that solves this is of the form:

x > 0, x > y and 2x > −y.

And likewise, we can solve for the area corresponding to each of the other candidates winning. The following
graph shows the results space divided up into its winning spaces (along the lines of the graph we have ties
between the candidates).

Figure 2: Winning results space

8 A new voting technique?

This seems to suggest to us a new technique of voting. One of the principle causes of ambiguity in positional
weighted voting is in the choosing of the weighting vector, out of many equally reasonable weighting vectors;
and, as we’ve shown, this choice of weighting vector can change the results of a vote dramatically. But what
looking at the reasonable results suggests to us is that we can vote in this way without actually picking
a specific weighting vector; rather, from any profile we can generate its reasonable results space, and then
calculate the proportions of that results space that lie in each candidate’s winning space. Then the candidate
with the highest percent is the winner of the election. Instead of choosing a specific weighting vector, this
method would be looking at all possible reasonable weighting vectors.
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As per our previous example, we can compare our graph of our reasonable results space with our candi-
dates’ winning regions, we see that clearly, candidate one would win.

Example 8.1. As another example, imagine we’re given the following reasonable results space for a
milk/wine/beer vote:

Figure 3: A reasonable results space

Then comparing this graph to our winning regions, we see that most of the reasonable results space goes
to milk; the second most goes to wine; and none of the reasonable results have beer winning. Thus, by this
new method of voting, we have milk winning, followed by wine, followed by beer. Notice that, if we choose
a specific weighting vector, wine could win.

9 Conclusions

For our system of voting via linear transformations, we know that given weights and a result, you can find
connecting profiles. We’ve shown that given a result and a profile, you can almost always find a connecting
weight, in a way that corresponds tightly with previous results. These results emphasize the importance a
weighting system has on any election– sometimes even more important than the vote itself. Before conducting
any election, serious thought should be put into the weighting system.

Future research could explore ways of representing our reasonable results space voting system with more
than three candidates. Obviously, in the way we’ve outlined here we need to be able to view a two-dimensional
graph of the reasonable results space; with more candidates, however, we would need to look at a higher-
dimensional graph. So potentially, this procedure could be systematized for more than three candidates in
the future.
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