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Abstract 

 
Within the Martian atmosphere today are ubiquitous dust aerosols and thin, cirrus-style water-ice clouds. To 

determine the water content of the clouds, using a full radiative transfer model, from spectral images of Mars, we 

must first understand how light is reflected from the surface. In order to do so, we begin by using principal 

component analysis (PCA) to search for characteristic surface spectral endmembers; the combination of these will 

described how light is reflected over all parts of the surface on a global scale. For this research, we used near-

infrared (1.5–4.1 µm) images taken at the NASA Infrared Telescope Facility between 1994 and 1995.  We chose 32 

specific wavelengths where most gasses in the Martian atmosphere are not active.  The images were cylindrically 

remapped and co-registered, then run through PCA to find the eigenvectors which characterize the surface data 

alone. After doing this for several sets of data, the eigenvectors were compared to check for consistency, which 

would indicate a characteristic model for the surface over all timescales exists. We present here today the results of 

these comparisons, as well as a comparison of these new results to previous median results. 
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1. Introduction 

 
Studying the atmosphere of Mars from Earth requires understanding how light is absorbed in the atmosphere and 

relating that to the spectral data we collect. From this data, we should be able to calculate exactly how much light is 

absorbed at both the surface and the atmosphere. The Martian atmosphere today consists mostly of CO2 gas but also 

contains significant dust and water-ice aerosols. Though the contents of the atmosphere are known, the specific 

amounts of each aerosol component are well characterized because disentangling the amounts of light absorbed by 

the surface versus the atmosphere is not a trivial task. Much research has been done to map the spectral reflectance 

of small, individual surface areas
1,2

, but one of the major goals of our research is to model the Martian surface 

spectral reflectance on a global scale. By isolating the surface reflectance alone, we will be able to distinguish the 

amount of light absorbed in the atmosphere and, more specifically, by the water-ice aerosols in the atmosphere. 

From this, we will be able to complete the ultimate goal of this research, which is to measure the amount of water-

ice content in the clouds over diurnal, seasonal, and inter-annual time scales. Currently, we are in the process of 

characterizing the surface reflectance, which this paper focuses on.  

   To determine how light is lost on Mars before it reaches Earth, we use a radiative transfer model (RT). Light from 

the Sun travels through space, enters the Martian atmosphere, reflects off the surface, travels back through the 

atmosphere, and then enters through Earth’s atmosphere to be collected. Because basic image reduction techniques 

already account for the intensity of light lost in Earth’s atmosphere, we ignore that component and are left with 

equation (1): 
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     I(𝜆)=𝐼sun(𝜆) [1−𝜒ice(𝜆)−𝜒dust(𝜆)−(1−𝐴(𝜆))]                  (1) 

 

 
where I is the measured intensity, Isun is the intensity from the Sun, the χ values are the fraction of light lost due to 

absorption by ice and dust aerosols, and A is the surface albedo (so 1–A is the fraction of light absorbed by the 

surface).  All of these parameters are functions of wavelength, λ. We have ignored the effects of the CO2 gas in the 

atmosphere because we can select our wavelengths where CO2 molecules are not active. 

   In the RT model, we already know I(λ) and Isun(λ), and both ice and dust absorption physics has been adequately 

modeled, which leaves the surface reflectance as the missing input.  If that can be modeled, then we can adjust the 

amounts of ice and dust until the model intensity matches the actual measured intensity, and thus we can recover the 

total amount of water ice in the clouds. 

 

 

2. Data 
 

Our research group has extensive near-infrared spectral image sets taken during every opposition from 1995 through 

2003 (roughly every 25 months). These images were taken at the NASA Infrared Telescope Facility on Mauna Kea, 

Hawaii using the NSFCAM.  We made use of its circular variable filter (CVF) in order to choose a specific set of 32 

wavelengths between 1.5 and 4.1 µm.  The spectral resolution (Δλ/λ) of the CVF is about 1%.  For this work we 

focused on data sets taken in the 1994–1995 opposition.  See Table 1 for details. 

 

Table 1. data set details 

 

Date Set # UT Time Range Size (arcsec) Season 

28 DEC 1994 2 12:57–13:18 10.8 Late N spring 

 3 14:17–14:38   

14 JAN 1995 1 11:56–12:17 12.3 N spring–summer 

 2 14:09–14:32   

 

 

3. Analysis Methodology 

 
To determine how much light is lost at any part of the surface, we need to find an acurate spectral model for A(λ) 

that describes surface reflectance based on the data we collect. The basic idea is that we can break down the spectral 

reflectance of any part of the surface into a linear combination of “pure” spectral endmembers.  The simplest such 

model would be to call the brightest and darkest regions our endmembers, then everywhere else is just a linear 

mixture of those two
3
.  However, such simple models assume that regions in the data actually are sufficiently 

spectrally pure they can act as an endmember. Previous work shows that they are not
4
.  

   To create a characteristic model from the spectral data, we need a technique that will isolate the surface spectral 

signatures from the atmospheric spectral signatures.  The technique we chose was principal component analysis 

(PCA). PCA can be defined as “primarily a data-analytic technique that obtains linear transformations of a group of 

correlated variables such that certain optimal conditions are achieved. The most important of these conditions is that 

the transformed variables are uncorrelated”
5
. Essentially, we are looking for those unique “variables” through our 

spectral data sets that best characterize the data—we move from a data space defined by the wavelengths of light 

observed to a space defined by “traits” of Mars that characterize the maximum variance within the images. 

Mathematically, these new variables are eigenvectors of the data variance/covariance matrix.   

   Conceptually, all our data can be thought of as points in a 32-dimensional space (the wavelengths used) and we are 

looking for the longest directions through the data cloud. Table 2 summarizes how PCA works for Martian surface 

spectra. Based on previous research
4
, we have found that the first three or four eigenvectors can account for over 

99% of the data variance. Figure 1 shows a graph of the eigenvalues for the first nine eigenvectors.  In PCA, the 
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eigenvalues are a direct measure of the amount of variance contained in that dimension.  This means that not only do 

we have a data space where the dimensions are based on the intrinsic data variance, but we have also effectively 

reduced the size of that space from 32 dimensions to 3–4.  And since each eigenvector is based in intrinsic data 

characteristics, each one can be ascribed to a trait of the data, as we will show in the next section. 

 

Table 2. how PCA works for Martian surface spectra 

 

 

 
 

Figure 1. Scree graph of surface spectra eigenvalues 

   This technique for finding surface spectral models will be especially useful if the pure surface endmembers are 

constant—previous work
4
 leads us to believe this may be true, and we will check the significant eigenvectors from 

this work to those for overall consistency.  

   To begin extracting the eigenvectors from the data sets, all of the images in each set must be cylindrically 

remapped and registered. The spectra from each image can then be run through PCA (in a program written in IDL).  

In the program, we plot the average spectral reflectance of six different regions on the surface image to help us 

identify the eigenvector traits in the data. Then we plot the first four eigenvectors for each data set. Finally, these 

eigenvectors are compared across data sets, as well as to previous median results, to check for consistency over time. 

 

 

4. Results 

 
Figures 2.1–2.4 show the PCA of our four data sets.  In each figure there is a continuum image of Mars 

(cylindrically remapped) with six regions of interest highlighted, a PCA plot of the spectral data in the 1
st
 

eigenfunction versus the 0
th

 eigenfunction space, with the points from the same six regions highlighted, and a graph 

of the average spectrum of the six regions. Within the highlighted regions are four major vertices in PCA space: red 

for bright regions, yellow for dark regions, green for the polar region, and cyan for the shade regions.  As can be 

seen, the reason these regions are interesting is that they tend to lie at, or near, vertices of the PCA data cloud—they 

represent eigenvector trait endpoints and are thus possible candidates to guide the recovery of spectral endmembers.  

Visually Analytically 

 Plot all spectral data into 32-space 

 Find paths through data with maximal amount 

of variance 

 Compare brightness measurements of 

different regions at different wavelengths 

 Calculate variances and co-variances between 

measurements and put into a 32x32 matrix 

 Find 32 eigenvalues and eigenvectors (i.e. 

surface characteristics and spectral data paths) 

 Analyze for significant eigenvectors 
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The blue and purple regions also represent interesting, near-vertex points, but are usually not endpoints. Each 

colored line on the average spectra plot corresponds to a matching color in the PCA plot and region on Mars and 

shows clearly that the brighter regions (red or green) have higher average reflectance over each wavelength 

compared to darker regions (yellow or cyan).  Because the brightest and darkest regions bound the 0th eigenvector, 

we interpret this trait to be an overall, general albedo.  Because the coldest, ice-covered, regions and the warmest 

regions bound the 1st eigenvector, we interpret this trait to be temperature/iciness.  By similar analysis, the other two 

eigenvectors appear to be correlated with large-scale and smaller-scale geology.
4
   

 

 
 

Figure 2.1. Surface image, PCA plot and average spectra plot for Dec. 28, 1994, Set 2 



1005 
 

 

 
 

Figure 2.2. Surface image, PCA plot and average spectra plot for Dec. 28, 1994, Set 3 

 

 
 

Figure 2.3. Surface image, PCA plot and average spectra plot for Jan. 14, 1995, Set 1 
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Figure 2.4. Surface image, PCA plot and average spectra plot for Jan. 14, 1995, Set 2 

   We also used our program to find and plot the first four eigenvectors for each data set. In Figures 3.1 through 3.4 

we have the plots for eigenvectors 0, 1, 2 and 3, respectively. It can been seen that the first three eigenvectors for 

each data set follow a relatively similar spectral shape, and a shape similar to the median eigenvector from previous 

work.  This bolsters the consistency idea.  However, for eigenvector 3, the spectra are very scattered and 

uncorrelated, meaning that eigenvector 3 is either characteristic of data noise, or perhaps some very localized 

geology—since we see different regions within our entire field of view for each data set, differing geologic regions 

come into, and go out of, view. We would not expect a trait based on localized geology to be entirely consistent over 

all data sets.  Of course, this dimension is also relatively insignificant, as we see from its eigenvalue in Figure 1, so 

its contribution to potential endmembers will also be small.  
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Figure 3.1. Eigenvector 0 plot 

 

 
 

Figure 3.2. Eigenvector 1 plot 
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Figure 3.3. Eigenvector 2 plot 

 

 
 

Figure 3.4. Eigenvector 3 plot 
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5. Conclusions 

 
Based on our results, we conclude that these spectral data are producing spectral shapes that show relative 

consistency over time, meaning we should be able to create a single set of characteristic model endmembers for the 

surface reflectance; however, more data sets will need to be run through PCA and analyzed to further confirm the 

consistency of the surface reflectance over time. The first three eigenvectors account for almost 99% of all the 

spectral data and will be used primarily to construct our final model.   Future work will be carrying out this next step 

of combining the eigenvectors to create the surface spectral endmembers which can then be used in the RT modeling 

to finally recover the ice cloud optical depth and thus the water content in the clouds. 
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