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Abstract 

 
Finger Games, a topic in number theory, study certain 1-1 operations on sequences of 0’s and 1’s of length 

2f - viewing the left and right half as fingers of adjacent hands interpreted using what is called Gray Code. 

In particular, Finger Games involve the operation of counting in Gray Code by an even number C, 

alternating hands. As the operations are 1-1, they divide the sequences into orbits. This paper focuses on 

the even parts of orbits for C = 6, 10, 14, and 18. 

 
Keywords: Number Theory; Gray Code 

 

 

1. Introduction 

 

1.1 Gray Code with Odd and Even Moves 

 

Finger Games uses a notation system called Gray Code1 (different than binary) for counting using 0 and 1 

bits. Every nonnegative integer can be represented by a unique sequence of 0’s and 1’s. Adding 1 to an 

even number changes the bottom bit, called an odd move, as this results in an odd number. Adding 1 to an 

odd number changes the bit above the lowest 1-bit, called an even move, as this results in an even number. 

Both moves can be applied to all nonnegative numbers with the exceptional case E(0)= 0. E°E and O°O 

are both the identity function, I.  

 

1.2 Useful Information 

 
1. 2k is the smallest k + l bit number with the form 11 followed by k – 1 0’s 

2. 2k – 1 is the largest k bit with the form 1 followed by k – 1 0’s 

3. An even number has an even number of 1’s and an odd number has an odd number of 1’s 

 

 

2. Finger Games 

 
With Finger Games, there are two sequences of Gray Code of the same length, which can be divided into a 

right hand and left hand facing each other together forming a configuration. The bottom bits of each 

hand are the pinkies and the top bits of each hand are the adjacent thumbs. The individual places, 

representing a bit, are called fingers.  A down finger represents a 0 and an up finger represents a 1.  
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For example, a 7 read backwards (001 with the rightmost 1 being the top bit) on the left and a 4 (110 with 

the leftmost 1 being the top bit) on the right give the combined configuration 001110. 

 

2.1 Odd and Even Moves, Left and Right Hands 

 
Even and odd moves can be applied to configurations on the combined hand.  

OR- odd move on the right, which changes the rightmost bit of the combined sequence.  

OL- odd move on the left, which changes the leftmost bit of the combined sequence.   

ER- even move on the right, which changes the bit to the left of the rightmost 1. 

EL- even move on the left, which changes the bit to the right of the leftmost 1.   

Just as there is an exception for E, there are several exceptions for ER and EL.  

ER does nothing to (0 … 0) and (1 … 0) and EL does nothing to (0 … 0) and (0 … 1).  

These moves OR, OL, ER, and EL are 1-1 and onto (as they are self-inverses). 

 

Table 1: Gray Codes for Small Integers. 

Integer Gray Code Notes 

0 0  

1 1 The bottom bit was changed from 0 to 1. 

2 11 The bit to the left of the bottom 1 was changed from 0 to 1. 

2k where k = 1 is the smallest k + 1 bit number. 

3 10 The bottom bit was changed from 0 to 1. 

4 110 The bit to the left of the bottom 1 was changed from 0 to 1. 

2k where k = 2 is the smallest k + 1 bit number. 

5 111 The bottom bit was changed from 0 to 1. 

6 101 The bit to the left of the bottom 1 was changed from 0 to 1. 

7 100 The bottom bit was changed from 0 to 1. 

2k – 1 where k = 3 is the largest k bit number. 

8 1100 The bit to the left of the bottom 1 was changed from 0 to 1. 

2k where k = 3 is the smallest k + 1 bit number. 

 

2.2 Counting by C 

 
Let f denote the number of fingers in each hand. Let C, an even number (by which one counts) be a lot less 

than 2f, usually < 2f/2. Counting by C consists of repeatedly applying C moves (alternating between odd & 

even moves) on one hand and then on the other hand repeatedly alternating between the two hands. 
 

2.3 Positions & Orbits 

 
As the Counting by C function of each hand alternates between OR and ER (or OL and EL), the counting by C 

function is also 1-1 and onto. As there are finitely (22f) many configurations, each position will eventually 

return to itself, thus creating orbits.   

A position is called an even position (or odd position) if the fingers combined between the two hands 

represent an even number (or odd number, respectively). So a position is even when either both hands are 

even or both hands are odd. An orbit is called an even orbit if all its positions are even; an odd orbit if all 

its positions are odd; and is called a mixed orbit if it has even and odd positions. 
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2.4 Related Work 

 
Past students worked with Professor Rosenthal on Finger Games. Brittany Rose2 in 2012 computed the 

even parts of orbits for C = 4 and 8 and had most of the ideas for 2n under the guidance of Professor 

Rosenthal. This paper discusses C = 6, 10, and 14 in full and partially discusses C = 18. The results for 

each values of C are discovered by a long sequence of results that build on previous results – both of 

previous students and mine. 

 

2.5 Useful Lemmas 

 
Let d = 2f mod C and u = C – d. This notation is utilized at the beginning of section 3.  

 

2.5.1 Lemma 1 (Mod 6) 

 
For f ≥ 1: 

If f = even, then 2f = 4 mod 6. So d = 4; u = 2  

If f = odd, then 2f = 2 mod 6. So d = 2; u = 4 

 

2.5.2 Lemma 2 (Mod 10) 

 
For f ≥ 1: 

If f = 0 mod 4, then 2f = 6 mod 10. So d = 6; u = 4    

If f = 1 mod 4, then 2f = 2 mod 10. So d = 2; u = 8      

If f = 2 mod 4, then 2f = 4 mod 10. So d = 4; u = 6     

If f = 3 mod 4, then 2f = 8 mod 10. So d = 8; u = 2 

 

2.5.3 Lemma 3 (Mod 14) 

 
For f ≥ 1: 

If f = 0 mod 3, then 2f = 8 mod 14. So d = 8; u = 6 

If f = 1 mod 3, then 2f = 2 mod 14. So d = 2; u = 12      

If f = 2 mod 3, then 2f = 4 mod 14. So d = 4; u = 10 

 

2.5.4 Lemma 4 (Mod 18) 

 
For f ≥ 1: 

If f = 0 mod 6, then 2f = 64 mod 18 = 10 mod 18. So d = 10; u = 8 

If f = 1 mod 6, then 2f = 2 mod 18. So d = 2; u = 16 

If f = 2 mod 6, then 2f = 4 mod 18. So d = 4; u = 14 

If f = 3 mod 6, then 2f = 8 mod 18. So d = 8; u = 10 

If f = 4 mod 6, then 2f = 16 mod 18. So d = 16; u = 2 

If f = 5 mod 6, then 2f = 32 mod 18 = 14 mod 18. So d = 14; u = 4 

 

We denote the number of cases in the lemmas as L(C). 

 

2.6 Both Hands Even 

 
If both hands are even, then counting by C: 

E1) On the right increases the even value n on the right to n + C unless an “overflow” occurs, that is,          

n + C ≥ 2f.  This is called a top interaction of the right on the left (changing the top bit on the left, that is, 

applying an odd move on the left read backwards).  
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E2) On the left increases the even value n on the right to n + C unless an “overflow” occurs, that is,            

n + C ≥ 2f.  This is called a top interaction of the left on the right (changing the top bit on the right).  

 

When both hands are even, a top interaction changes both hands to odd.  

 

2.7 Both Hands Odd 

 
If both hands are odd, then counting by C: 

O1) On the right decreases the odd value n on the right to n ‒ C by C unless an “underflow” occurs, that is, 

n < C.  This is a bottom interaction from the right on the left (changing the bit below the top most 1-bit on 

the left, that is, applying an even move to the left read backwards). 

O2) On the left decreases the odd value n on the right to n ‒ C by C unless, unless an “underflow” occurs, 

that is, n < C. This is a bottom interaction from the left on the right (changing the bit below the top most 1-

bit on the right).  

When both hands are odd, a bottom interaction changes both hands to even.  

 

2.8 Multistep 

 
If both hands are even, continue to add C alternately to each hand (upsweep) until one hand reaches 2f – 1, 

then changing the top bit on the other hand (top interaction). Then when both hands are odd, continue to 

subtract by C alternately on each hand (downsweep) until one hand 0, then changing the bit above the 

lowest 1-bit on the other hand (bottom interaction). An upsweep, top interaction, downsweep, and bottom 

interaction is called a multistep. Theorems 1A and 1B describe these more fully. 

The underlined entry indicates the side that counts first. 

 

2.9 Mixed Orbits 

 
The mixed orbits of (e, 0) for 0 ≤ e < C where e is even. This is mixed because the orbit contains odd and 

even positions. The previous odd position is (C – e – 1, 0). 

 

2.9.1 Even Orbits 
 

There are two types of Even Orbits: Short Even Orbits and Long Even Orbits to be described later. 

 

2.9.2 Rough Statement of Theorem 1A 

 
If d ≤ a, then after a multistep (a, b) is sent to (a – d, L2(b – d)) where L2 is counting by 2 from the top, i.e.  

changing the top bit and then changing the bit below the topmost 1. 

 

2.9.3 Rough Statement of Theorem 1B 
 

If 0 ≤ a < d, then after a multistep (a, b) is sent to (a + u, L2(b + u)) where L2 is as above. 

These theorems have exceptions. 

C: In case a) when d ≤ a < C and b < d since then b – d < 0.   

D: In case b) when 0 ≤ a < d and b + u ≥ 2f. 

E: In case b) when 0 ≤ a < d and b + u = 2f – 2, so L2(b + u) = 2f. 
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2.9.4 Correct Statement of Theorem 13 

 
A: If a and b are even, d ≤ a < C, and d ≤ b< 2f then, after a multistep (a, b) is sent to  

(a – d, L2(b – d)) where L2 is as above.    

B:    If a and b are even, 0 ≤ a < d, and 0 ≤ b < 2f – u then, after a multistep (a, b) is sent to  

        (a + u, L2(b + u)) where L2 is as above. 

 

C:    If 0 ≤ a ≤ d, and b < d, then after a multistep (a, b)  (L2(a - d), b + u). So in exception C, a lead 

        change occurs, that is, the leading hand of the start of successive multistep changes.  

 

Lead changes or the end of an even part also occur in Exceptional Cases D and E.  

 

 

3. Drum Roll, Tops, & Bottoms 

 
Let b = # of bits of C. 

Theorem 1A and 1B imply the left hand repeatedly goes thru a pattern of ups (counting up by u) and downs 

(counting down by d) starting and ending at 0, which is called a drum roll. The right hand can be broken 

into a bottom consisting of b bits and a top consisting of the remaining g = f – b bits. The bottom of the 

right imitates the drum roll, that is it follows the pattern of the drum roll of the left hand (that is, counting 

up by u or down by d). More precisely, if the bottom is even, add u or subtract d and if the bottom is odd, 

subtract u or add d. Each stage on the right also counts by 2 on the top read backwards at each stage; that 

is to say when the top is even, add 2, and when the top is odd, subtract 2. All actions involving the top 

involve it being read backwards. 

 
Table 2: Examples of Drum Rolls 

Case Drum Roll 

k = odd for C = 6 (u = 2; d = 4) 0  2  4  0 

k = 2 mod 4 for C = 10 (u = 6; d = 4) 0  6  2  8  4  0 

k = 2 mod 3 for C = 14 (u = 10; d = 4) 0  10 6 2  12  8  4  0 

k = 2 mod 6 for C = 18 (u = 14; d = 4) 0  14  10  6  2  16  12  8  4  0 

 
As noted above, the bottom imitates the drum rolls. For example, for C = 14 with f = 2 mod 3, if the bottom 

starts at 5 then in a drum roll, the bottom goes:  

5  4  0  3  6  2  1  5. (As with bottom underflows as described below at the transitions from 

odd to even or even to odd). 

 

3.1 Top and Bottom Overflows and Underflows 

 

3.1.1 Top Overflow 
 

A Top Overflow occurs after the even top (of the hand) counts up by 2 reaching 2g – 2, adding 1 gives       

2g – 1, then changes the top-most bit of the bottom. 

 

3.1.2 Top Underflow 
 

A Top Underflow occurs after the odd top (of the hand) counts down by 2 reaching 1, subtracting 1 gives 0, 

then changes the bit below the top-most 1-bit of the bottom.  
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3.1.3 Bottom Overflow 
 

A Bottom Overflow occurs after bottom reaches 2b – 2, adding 1 gives 2b – 1, then changes the top-most bit 

of the top. After the bottom underflow the counting on the bottom by u or d is completed, and then as usual 

one counts by 2 on the top.   

 

3.1.4 Bottom Underflow 
 

A Bottom Underflow occurs after the bottom reaches 1, subtracting 1 reaches 0, subtracting 1 then changes 

the bit below the top-most bit on the top read backwards. After the bottom underflow the counting on the 

bottom by u or d is completed, and then as usual one counts by 2 on the top.   

 

3.2 Top & Bottom Overflow & Underflow Analysis 

 
The most common overflows and underflows are by the bottom; the bottom underflow needs the most 

analysis. 

Bottoms overflows and underflows are most common because in a multistep the bottom mirrors the ups and 

downs of the drum roll and can change by more than 2 while the top only counts by 2. In addition, the top 

is typically longer than the bottom so it is less likely for the top to reach an overflow or underflow.  

In a drum roll, often bottom overflows occur in pairs, which “cancel” (and so can be ignored) as they 

change the same bit on the top. Exceptions occur if a top overflow or top underflow also occurs within a 

drum roll. Bottom underflows also often cancel but only when the position of the top-most 1-bit on the top 

hasn’t changed. When the bottom overflows or underflows cancel within a drum roll, the top just changes 

by C (add C to the top if the top is even and subtract C from the top if the top is odd). With bottom 

overflows, a separate analysis is needed when a top overflow or underflow also occurs within a drum roll. 

 

 

4. String Pictures 

 
A String Picture is a visual representation of where a current position will go after many drum rolls when 

the bottom is an odd number < C (when the other hand is 0) and so has bottom underflows. The highest 

level uses all bits for the top. Each subsequent level needs one fewer bit than the level above and levels 

repeat every L(C) rows. Transitions from one level to another occur when the number of bits needed to 

write the top increases or decreases by one. By the number of bits to write the top we mean the bit number 

of the top-most 1 of the top. Henceforth we call this the length of the top. In a drum roll, bottom underflows 

cancel if and only if the number of bits to write the top doesn’t change. The arrows show the transitions up 

or down from any level. This is because levels repeat every L(C). For example, with C = 14, four levels are 

enough to show the repetitions although for other reasons, five levels may be preferable. 

Looking back at the lemma section, for: 

- Counting by 6, there are 2 + 1 = 3 levels 

- Counting by 10, there are 4 + 1 = 5 levels 

- Counting by 14, there are 3 + 1 = 4 levels (but prefer 5 levels) 

- Counting by 18, there are 6 + 1 = 7 levels  

o We will see that with Counting by 18 we actually need (6 ∙ 2) + 1 = 13 levels 

We use two types of string pictured called Rising String Pictures for bottoms an odd number with             

0 < n < 
𝐶

2
 and Falling String Pictures for bottoms and odd number with 

𝐶

2
 < n < C. In both pictures the top-

most level is g = f – b. Each level shows all tops of a particular length (for example 21mod3). Each level has 

two rows, the upper row (for example in Figure 1 below 21mod3 – 1) showing the odd number where arrows 

enter the level (for example 20mod3 + 1) and the lower row showing where arrows leave the level by 

changing the length of the top.  
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The transition from the upper row to the lower row is by repeated subtractions of C. The values for the 

lower row are found from the upper row using the appropriate case of the lemma for that value of C. The 

only difference between Rising and Falling String Pictures is how different levels are placed relative to 

each other.  

In Falling String Pictures, the levels are lined up so that the entry in the top level is C less than the entry in 

the bottom of one level above. In Rising String Pictures, the levels are lined up so that the entry in the 

nonpower of 2 part of the entry in the top row of a level is C less than the nonpower of 2 part of the entry in 

the bottom of one level below. For example, in Figure 1, 21mod3 – 1 is placed above 22mod3 + 13 (the -1 is 14 

below + 13 as C = 14). These layouts were chosen to make paths that don’t reverse levels look straight, and 

to make paths swerve (change columns) when the levels go up or down in different stages of the path.  

 

 

5. Discussion of Finger Games Results 
 

Lots of results of Fingers Games can be derived from String Pictures such as the one illustrated below in 

Figure 1.  

 

5.1 String Pictures Follow Path 

 
As shown above (and with any string picture), there are “straight” paths up, “straight” paths down, swerve 

paths, and cycles. To reiterate, “straight” paths move in one direction always increase or decrease in length. 

Swerve paths will increase and decrease in length (multiple times). Sometimes in a drum roll, the length 

changes by more than 1-bit, which requires more analysis as explained below. Cycles give rise to even 

orbits, which we call short even orbits, since positions return to themselves. This is shown on the string 

pictures by closed “polygons.” The length will increase and decrease by only a few. Cycles usually come in 

pairs because of a “duality” between a bottom of Ó and a bottom of C - Ó where Ó is odd < C. 

Since levels of a string picture repeat, in the repetitions of levels the strands have the same behavior. Let’s 

take a look at C = 14 for f = 2 mod 3 with the bottom being 5 and specifically Cycle 5A with the lines 

called strands. Here are two observations. First all of the strands in 5A fit into the entire picture and show 

where each path goes. Second, since cycles repeat, selecting a starting position will eventually return to that 

position.   

We write (a, [k,m]) to mean that a is the left hand, k is the top and n is the bottom of the right. Take a look 

at the topmost left cell that prints 20 mod 3 + 7. After one full drum roll, we end up at (0, [6, 10]), which we 

denote as [6, 10] for short.  
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f = 2 mod 3 2f = 4 or 18 mod 14 d = 4 u = 10 

Drum roll: 0  10 6 2  12 8 4 0 

Bottom roll: 5 40 3 62 1  5 

Levels up with 1, 3, 7, and 9; Levels down with 5, 11, and 13 

 

 

Figure 1: Bottom of the Right 5 
 

We use 5 levels rather than 4 levels to make the cycles easier to see.  

When a position with small length is going to change length by more than 1-bit, a drum roll needs to be 

done to verify positions do indeed follow the path. At low levels, the entries may not have the correct 

length. These correspond to a drum having more than one length change. For example, 23 + 9 = 17 has 

length 5, not 4. After studying all situations where this happens with C = 6, C = 10, C = 14, and C = 18, we 

found whenever there is a “culprit,” that drum roll will skip all culprit positions and bring one to the next 

correct position on the strand.  

 

5.2 Upper-Level of Strings 

 
The connection you want to make is that three levels below the topmost left cell is also 20 mod 3 + 7. Suppose 

that is our initial position. Then as we follow Cycle 5A, we will end up at 20 mod 3 + 7. So, if we start at [6, 

10] above, we will eventually return to [6, 10]. The question is how to we get back without the upper 

levels? Further analysis examines what happens above the top of the string picture. Not only does such 

analysis show that Cycle 5A above this top, but it also shows how strings for odd bottom value often 

transition to strings for perhaps a different value of the bottom.  

 

5.3 Short Even Orbits & Long Even Orbits 

 
With Short Even Orbits, lengths of the top do not change by much throughout the orbit, as in, the number 

of bits needed to write a certain number only shortened or increased by a few bits (in the cycles in the 

String Pictures). 

Many strands occur in the mixed orbits. But strands not occurring in mixed orbits must be part of even 

orbits that do up or down through virtually all levels. Hence, such even orbits are called Long Even 

Orbits. 
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6. Broad Overview of Results 

 
Table 3: Summary of Orbits 

 
 C = 6 C = 10 C = 14 C = 18 

Short 

Even 

Orbits 

Two short even 

orbits arising from 

cycles with 

bottoms of 1 and 3 

for  f  = 0 and 1 

mod 2 

 

No cycles and so 

no short even orbits 

 

Four short even 

orbits arising from 

cycles with 

bottoms of  5 and 7 

 

18 short even orbits for        

f  = 2 mod 6 

 

24 short even orbits for        

f  = 1 and 3 mod 6 

 

28 short even orbits for        

f  = 4 mod 6 

 

32 short even orbits for        

f  = 5 mod 6 

 

26 short even orbits for        

f  = 0 mod 6 

Long 

Even 

Orbits 

No long even orbits 

 

Two long even 

orbits only for        

f  = 2 mod 4 

Two long even 

orbits only for        

f  = 1 mod 4 

 

No long even orbits for        

f  = 2 mod 6 

Mixed 

Orbits 

Three mixed orbits 

for  f  = 0 and 1 

mod 2 

 

Five mixed orbits 

for f  = 0, 1, 2, & 3 

mod 4 

 

Seven mixed orbits 

for  f  = 0, 1, & 2 

mod 3 

 

15 mixed orbits for               

f  = 2 mod 6 

 

It may appear that the number of mixed orbits are half of what the C value is but this is not true for C = 18 

as there are 15 mixed orbits (not 9 mixed orbits). C = 18 has more mixed orbits than expected because in 

string pictures several strands will pass through 12-levels before returning to the same column. This implies 

there are actually two paths – one for f = 2 mod 12 and one for f = 8 mod 12 (each of which has 9 mixed 

orbits). 

 

 

7. Future Work 

 
My research includes finding all even parts of orbits for a selected f and C. At the moment, only C = 18 is 

completed for f = 2 mod 6. For f = 0, 1, 3, 4, and 5 mod 6. I have so far only obtained the string pictures 

and resulting short even orbits. I have not yet studied even parts of mixed orbits and long even orbits (if 

any). Finding mixed orbits is my next goal.  

For future students who work on this research project, other possible ideas to investigate and look into are: 

finding odd parts; predicting when lead changes will occur before encountering one; creating a computer 

program that quickly calculates the orbits; and seeing if the even parts of orbits for 2C can be found from 

those for C.  

 

 

 

 

 

 

 



285 
 

Acknowledgments: I am grateful to have worked under the guidance of Dr. John Rosenthal, 

Department of Mathematics, at Ithaca College in Ithaca, NY. As my faculty mentor on this project, he 

patiently reviewed my manuscript countless times and provided valuable feedback, direction, and 

suggestions for this journal publication. He also guided me through my presentations at the Whalen 

Academic Symposium in April 2016 & 2017 at Ithaca College, MathFest in July 2016 in Columbus, OH, 

the National Conference of Undergraduate Research (NCUR) in April 2017 at the University of Memphis 

in Memphis, TN, and my Mathematics Honors Presentation in April 2017 at Ithaca College. I would also 

like to thank the entire Department of Mathematics at Ithaca College for providing me with the knowledge, 

training, and support. Lastly, I would like to recognize the Summer Scholars Program, sponsored by the 

School of Humanities and Sciences, at Ithaca College for funding my research during the summer of 2016. 

 

 

1. Doran, Robert W. "The Gray Code." J. UCS 13.11 (2007): 1573-1597 

2. Rose, Brittany, Gray Code and Finger Games: Counting by 4 and 8, 2011 (Unpublished) 

3. Rosenthal, John, Results of Multisteps, 2014 (Unpublished) 

 

 
 
 


