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Abstract 
 

The realization of a practical quantum computer depends on the development of single and multiple qubit logic 

gates. However, multiple degree of freedom logic gates are difficult to demonstrate experimentally due to the 

complexity arising from qubit-to-qubit decoherence. Photons seem ideal candidates for qubits due to their low 

interaction with their environment. A combination of optical elements has been used to produce and manipulate 

photonic states with multiple degrees of freedom. These manipulations simulate computations with a logic-gate set 

comprising of photonic states. A four-degree-of freedom system consisting of correlated photon pairs produced by 

down-conversion, traveling through a Mach Zehnder interferometer, and interacting with wave plates and polarizers 

was created. The interference pattern of the photons in the interferometer was verified using coincidence-counting 

electronics. It was observed that when the information carried by these photons remains indistinguishable, the 

photons interfere with themselves. However, interference disappeared when such information was made 

distinguishable. Nevertheless, the interference pattern reappeared when a polarizer was placed after the 

interferometer. The polarizer erased the information carried by the photon’s polarization. The results from these 

experiments demonstrate that photonic states could be used as multiple degree of freedom qubits to perform 

computations and to possibly scale a quantum computer. 
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1. Introduction 

 

Wires and logic gates in computers have become increasingly small, so small that they will soon reach atomic scale 

sizes
1
. At such small scale, quantum mechanics plays an important role in the behavior of these computer 

components. Therefore, a machine that understands the behavior of systems at such small scales is necessary: a 

quantum computer. In 1982, Nobel Laureate Richard Feynman first proposed the idea of a computer that works 

under the principles of quantum mechanics
1
. According to Feynman, a quantum computer should be able to process 

information on quantum bits rather than classical bits. A bit is the fundamental unit of information, representing the 

distinction between two possible logic states, conventionally called 0 and 1. A “bit” also refers to a physical system 

that stores a bit of information
1
. The quantum analog of a classical bit is known as qubit. However, while the state of 

a classical bit can only be 1 or 0 at the time, a quantum bit can be at both states simultaneously. That is, a quantum 

bit, or qubit, can be 0 and 1 simultaneously. This phenomenon suggests that a huge speedup in computational power 

would result from replacing all current computing technology, which stores information in bits, with a quantum 

computer that stores information in qubits. Similar to classical computations, quantum computations can be broken 

into a sequence of logic gates that act on a few qubits at the time
2
. Wires are used to carry information around the 

circuits, while logic gates perform manipulations of the information, converting it from one form to another. 
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However, the main difference between a classical and a quantum logic gate is the way they manipulate bits. 

Classical gates manipulate the classical bits, 0 or 1, one at the time, whereas quantum logic gates can manipulate a 

system with an arbitrary number of qubits
2
. A qubit can be represented by the state of a quantum mechanical system 

such as an atom, a photon, or nuclear spin
1
. The quantum phenomenon that describes a system existing at multiple 

states simultaneously is known as superposition. Superposition is the defining feature of quantum mechanics that 

allows systems such as electrons or photons to exist in two or more places at once. Hence, qubits can exist in a 

superposition of 0 and 1 simultaneously
1
. To realize a quantum computer, qubits must retain their quantum 

properties to perform computations and read out their output. However, physical systems such as atoms and nuclear 

spins interact with their surroundings, making them susceptible to noise
3
. This type of quantum noise is known as 

decoherence. Ideally, qubits should remain isolated from their surroundings in some sort of closed system to prevent 

this inherent type of noise from affecting computations. Achieving a perfectly isolated system, however, has become 

one of the major challenges in the physical realization of a quantum computer.  

   An attractive physical system for representing qubits is a photon because photons do not interact very strongly 

with their surroundings. In fact, they can be guided long distances with negligible losses, as has been observed in 

various communication systems that use optic fibers
3
. Photons can carry information in their polarization state. 

Polarization refers to the direction of oscillation of the electric field of a photon. As a result, photonic states, such as 

polarization, can be used as qubits. The polarization state of a photon can be represented mathematically as a vector. 

For example, if a photon is vertically or horizontally polarized, its state of polarization can be expressed respectively 

as shown in equation (1). 
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For a quantum bit, the logic state 0 corresponds to a two-dimensional vector, (
 
 
), and the logic state 1 corresponds 

to the vector (
 
 
). As a result, the vertical and horizontal polarization states of a photon can represent the logic states 

1 and 0 respectively
1
. If a quantum computer were ever built, algorithms would perform computations in parallel. 

This refers to a computer’s capability to carry out many computations simultaneously in superposition
4
. Although, 

superposition is the quantum mechanical feature that permits two logic states to exist simultaneously, superposition 

is not the only effect that would be responsible for a computational speedup. Entanglement is another feature that is 

currently being exploited as quantum computing technology research progresses. Entanglement is a physical 

phenomenon that manifests itself as a strong correlation among particles, where the state of each particle cannot be 

described independently; instead, a state is given for the entire system as a whole
5
. Accordingly, multiple-qubit logic 

gates could be created using the entanglement shared by photons, thus exponentially increasing the speed of 

computation of a quantum computer.  

   As a number of other physical systems, photons can exhibit entanglement. Entangled photons can be produced 

through a process known as spontaneous parametric down-conversion. Down-conversion is a process where a 

nonlinear crystal is used to split photons into other pairs of photons
5
. The idea behind parametric down-conversion 

is similar to that of a dispersion prism, where a beam of white light traveling through a dispersion prism splits into 

its spectral components. When these beams exit the prism, they bend at different angles, and each exiting beam 

corresponds to a particular wavelength. In accordance with the laws of conservation of energy and momentum, the 

total energy and momenta of these exiting beams is equal to the energy and momentum of the incident white light 

beam. Similarly, when photons (pump photons) pass through a down-conversion crystal, they split into pairs, 

historically known as idler and signal photons
6
. Their combined energy and momenta is equal to the energy and 

momentum of the pump photons. Although the dispersion of light in a prism is a good way to illustrate how down-

conversion works, this analogy is not fully correct. Signal and idler photons are correlated in the sense that they have 

equal polarization states, which in turn are perpendicular to the polarization state of the pump photons. Thus, 

polarization qubits can be formed by parametric down-conversion.  

   Photons, and therefore qubits, can be manipulated to process information using several optical elements such as 

those in a Mach Zehnder interferometer. Figure 1 shows a schematic representation of a Mach Zehnder 

interferometer and a source of correlated photons. Source S produces pairs of correlated photons – idler and signal 

photons. The idler photons are sent to an avalanche photodiode detector (APD), while the signal photons are sent 

through a Mach Zehnder interferometer to another APD detector. One of the mirrors in the interferometer (Mp) 

moves, making one of the arms longer than the other. The difference in path lengths introduces a phase shift 



75 
 

between the photons travelling through each of the interferometer arms. As a result, an interference pattern will be 

observed at the detector placed at output   of the interferometer.  

 

 
Figure 1: Schematic of Mach Zehnder interferometer and source of correlated photons

6
  

   One way to analytically understand how photons respond to the manipulations resulting from adjusting the 

components of a Mach Zehnder interferometer is by calculating the probabilities of certain events to occur. For 

example, the probability of detecting a photon at output   of figure 1 could be obtained by examining the interaction 

of signal photons with the interferometer components. Useful mathematical tools to represent this type of 

interactions are probability amplitudes. Unlike classical physics, quantum mechanics does not provide exact 

quantities of physical variables. Instead, only probabilities of events to occur can be calculated. Probability 

amplitudes can be represented by the Greek letter phi   ; the modulus squared of this quantity represents the 

probability of an event to occur,   | | . Thus, in photon interference experiments, the event where a signal 

photon arrives at a detector through one of the paths of the Mach Zehnder interferometer can be represented by a 

probability amplitude  , and the probability of this event to occur is   | |  
6
. 

   Similar to sound waves, water waves, and other types of waves, probability amplitudes follow the principle of 

superposition. To illustrate these ideas consider the Mach Zehnder interferometer presented in figure 1 where a 

source of light,  , sends two beams of photons to two different detectors. The beam sent through the interferometer 

has two indistinguishable paths through which the beam could reach the detector at output  : path 1 represented 

by   , and path 2 represented by   . Accordingly, if source   sends single photons through the interferometer, each 

photon will choose either path    or path   .  The event whereby a photon arrives to the detector at output   through 

path    can be represented by the probability amplitude    , and the probability оf this event to occur is equal 

to    |  |
 . Similarly, if a photon arrives to the same detector by taking path   , the probability of this event to 

occur is    |  |
 . Thus, if an experiment is conducted such that the apparatus cannot distinguish the path taken by 

a photon, the probability amplitude of that photon arriving to the detector at output   is the superposition of the 

probability amplitudes representing all the possible alternatives to arrive to that detector; that is,         . 

Consequently, the probability of a photon arriving to the detector at output   is   |       |
  

5
. Alternatively, if 

an experiment is capable of determining which path of the interferometer a photon took to arrive to the detector, the 

probability of such event to occur is equal to the sum of the probabilities of each available path to arrive to that 

detector. That is,         |  |
   |  |

  
5
.  

   One of the optical elements that can be used to simulate computations with correlated photons is a half-wave plate. 

In this experiment, half-wave plates are used to rotate the polarization of photons by 90 degrees. By placing a half-

wave plate in one of the interferometer arms, the polarization of the signal photons taking that path will be changed, 

thus making such path distinguishable. As a result, the interference pattern should disappear provided that the path 

taken by the signal photons is no longer indistinguishable. By carefully analyzing this situation, it is observed that 

the signal photons travelling through the interferometer carry information encoded in their polarization states. 

Whenever, this information is revealed (or the path is made distinguishable), the photons stop behaving the way they 

are supposed to, and the expected interference pattern disappears. On the other hand, if the information carried by 

the photon’s polarization states remains “encrypted” (indistinguishable), the photons behave normally and an 

interference pattern is observed. The gist of this experiment lies in the fact that the information revealed when the 

path of the signal photons travelling through the interferometer is made distinguishable can be erased to force the 

photons to behave normally. If a half-wave plate is placed in one of the interferometer arms to change the signal 

photons’ polarization, their polarization can be reverted to its original state by placing a polarizer at the exit of the 

interferometer. A polarizer is another linear optical device that acts more or less like a filter. A polarizer filters out 

photons with polarization state parallel to an internal axis, called extinction axis, and transmits photons with 

polarization state parallel to the orthogonal axis, called the transmission axis
7
. By placing a polarizer in such a way 
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that the signal photons’ polarization state is reverted to its original state, the interference pattern of the signal 

photons should reappear. As a result, the information about polarization, which resulted from placing a half-wave 

plate in the interferometer, would have been erased.  

   Just like the polarization state of a photon can be expressed as a vector, matrix operators acting on the state of this 

photon can be used to represent half-wave plates and other optical elements. For example, the operator that 

represents a half-wave plate whose optic axis can be rotated is given by equation (2) 
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where   is the angle between the direction of polarization of the photons, and the plate’s optic axis. Also, the 

operator  ̂( ), which transforms a square basis into a diagonal basis, is defined as   
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Similarly, a polarizer with its transmission axis oriented along some arbitrary direction   and rotated by an angle   

is given by equation (4)  
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   Furthermore, the path taken by a signal photon passing through a Mach Zehnder interferometer can be expressed 

in terms of state vectors, which are often referred to as propagation directions
5
. Because the arms of a Mach Zehnder 

interferometer are orthogonal to each other, the available directions of propagation in the interferometer can be 

expressed as vectors, | ⟩ and | ⟩, as shown in figure 2. 

 

 
Figure 2: Mach Zehnder interferometer showing directions of propagation. BS: beam splitter, M: mirror

5
 

Matrix operators can also represent the optical components that comprise a Mach Zehnder interferometer. The 

operator for a symmetric, non-polarizing beam splitter and a mirror are given by equations (5) and (6) respectively.  
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In addition, attaching one of the interferometer mirrors to a piezoelectric stack and applying a voltage can cause a 

phase shift between the interferometer arms; this phase shift is given by equation (7).  

 ̂  ( 
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where   represents the phase difference, and the subscripts 1 and 2 refer to the arms of the interferometer. Finally, a 

single operator representing the entire Mach Zehnder interferometer can be constructed by grouping the terms given 

by equations (2) through (7) following the order with which the photons traveling thorough the interferometer 

encounter each optical component.  

   The expressions given above are a nice way to represent the effect of linear optical elements used in experiments 

with photons. However, in quantum mechanics, it turns out that making a measurement of the state of a photon does 

not yield the precise state of such photon, but rather the probability of finding a photon in such state. Moreover, the 

act of measuring the state of a signal photon in itself constitutes another operation. This operation is the outer 

product of the photon state vectors, which is also known as projection. Thus, the probability of finding a photon, 

which entered the interferometer in the state  |  ⟩ , in the propagation direction state  | ⟩  at the output of the 

interferometer is given by equation (8) 

 

 

   | ̂ |  ⟩|
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In this experiment, the concept of Hilbert space is also important. A system comprising of signal photons travelling 

through an interferometer is a four-dimensional Hilbert space: two dimensions for direction of 

propagation (| ⟩     | ⟩) and two dimensions for polarization (| ⟩     | ⟩). For example, combinations among 

these four dimensions can be computed with equation (9) 
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where the symbol   indicates an algebraic operation known as the Kronecker product
5
.  

 

 

2. Experimental Method 
 

Figure 3 shows a schematic representation of the setup used in this experiment. Pump photons with approximately 

405 nm wavelengths and 15-50 mW are produced with a GaN diode laser. These photons enter a barium-borate 

(BBO) crystal, which converts them into pairs of entangled photons through parametric down-conversion. In 

addition, A HeNe laser is used to align all optical components. The BBO crystal is oriented such that correlated 

photon pairs leave the crystal at 3 degrees from its central axis. The idler photon of each entangled photon pair is 

directed towards an avalanche photodiode detector. 

 

 
Figure 3: Layout for experiments with correlated photons. The interferometer components are beam splitters (BS), 

metallic mirrors (M), band-pass filters (F), avalanche photodiode detectors (A, B, C) and photon dump (D)
 5
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The other photons (signal photons) from each pair enter a Mach Zehnder interferometer, and arrive at another 

detector placed at the interferometer output. Similarly, one of the interferometer mirrors is mounted on a liner stage 

where a piezoelectric stack is used to move the mirror and produce a phase shift in the signal photons’ path. In 

addition, a half-wave plate is placed in one of the arms of the interferometer. Because half-wave plates, in addition 

to changing the polarization state of signal photons, introduce a phase shift in the path of the photons, an additional 

dummy half-wave plate (with its optic axis perpendicular to the polarization of the signal photons) is placed in the 

other arm of the interferometer. This dummy half-wave plate corrects for the phase shift caused by the other half-

wave plate placed in the interferometer, and equalizes both of the photon paths.  

   This experiment can be broken into three stages. In the first stage of the experiment, the optic axis of the half-wave 

plate is set to the vertical direction, which is the same as the polarization state of the photon pairs leaving the down-

conversion crystal. The dummy half-wave plate remains in the orthogonal direction (horizontal) for all stages of the 

experiment. In this stage, the path taken by the signal photons travelling through the interferometer arms is 

indistinguishable. Moreover, in the second stage of the experiment, the half-wave plate is rotated such that its optic 

axis is at 45° with respect to the horizontal. This half-wave plate rotates the polarization of the signal photons by 

90°; that is, the signal photons’ polarization is changed from the vertical to the horizontal direction. In this case, the 

path taken by the photons traveling the interferometer is distinguishable because the polarizations of the signal 

photons traveling through either path of the interferometer are orthogonal to each other. Lastly, in the third stage of 

the experiment, a polarizer with its transmission axis forming a 45° angle with respect to the horizontal is placed 

along the X-direction of propagation at the output of the interferometer. In this case, the photons passing the 

polarizer will have the same polarization state (at 45° from the horizontal), which makes them indistinguishable 

again. As a result, the path information that was being carried by the signal photons’ polarization state was erased 

along the X-direction after the interferometer.  

 

 

3. Mathematical Model 

 
As discussed earlier, this experiment can be expressed as a group of vector and matrix operations as follows. The 

signal photons entering the Mach Zehnder interferometer have the state |  ⟩, which indicates that these photons 

enter the interferometer vertically polarized and in the X-direction. The Mach Zehnder interferometer can be 

represented as a single matrix operator that contains the operations performed by each individual component of the 

interferometer, and containing information about the polarization and propagation direction of the signal photons. 

The matrix describing the interferometer is therefore given by equation (10) 
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where the subscripts    indicate direction of propagation states, and the angle   represents the rotation of the half-

wave plate’s optic axis. Furthermore,  ̂ is the identity matrix, and  ̂  ⁄ ( ) is the matrix that represents a half-wave 

plate rotated an angle  , which is given by equation (11) 
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The matrix given by equation (11) combines the polarization and propagation direction operations. The upper left 

and bottom right 2x2 polarization sub-matrices represent elements along the X and Y-directions respectively. These 

sub-matrices locate the rotatable half-wave plated along the X-direction of one arm, and the dummy half-wave plate 

in the Y-direction of the other arm. The off-diagonal sub-matrices are zero because they would mix the polarization 

components of one direction with those of the other direction, which a wave plate cannot do
5
.  

   In the first stage of this experiment, the half-wave plate placed in one of the arms of the interferometer has its optic 

axis parallel to the polarization state of the signal photons (vertical). Therefore,     , and when the initial 



 

state, |  ⟩, of the signal photons is affected by the matrix operator given by equation (10), the output state of these 

photons is given by equation (12) 
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where   is the phase shift produced by the interferometer arms. The terms in the second and fourth rows of equation 

(12) represent interference
5
. Measuring the final state of the signal photons is equivalent to making a direction-of-

propagation projection (outer product). The probability of finding signal photons at such output is, therefore, given 

by equation (13) 
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Similarly, for the second stage of this experiment, the half-wave plate is rotated by 45° or   ⁄ , and the output state 

of the signal photons leaving the interferometer is given by equation (14)  
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Equation (14) does not contain interference terms, which means that no interference pattern will be observed at the 

output of the interferometer. Furthermore, the probability of detecting a signal photon at the output of the 

interferometer is given by equation (15) 
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Hence, there is not interference because the paths of the interferometer are distinguishable, and the information 

encoded in the polarization of the signal photons is visible. Finally, the third stage of this experiment involves 

adding a polarizer along the X-direction after the interferometer, which is rotated by 45° from the horizontal. The 

matrix operator that represents a polarizer for the four-degree-of-freedom photon system is given by equation (16) 
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where the upper left and lower right sub-matrices of equation (16) correspond to the transmitted polarizations in the 

X and Y-directions respectively. As a result, equation (17) gives the probability of detecting these photons 
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4. Results 

 
The first stage of this experiment consisted of detecting coincidences, allowing the photons to travel through the 

interferometer. No wave plates or polarizers were placed in the path of the photons or after the interferometer. 

Figure 4 shows the interference pattern of single photons when the path by the signal photons was indistinguishable. 

Coincidences were recorded every 10 seconds, and the average number of coincidences in each collection time 

appear in figure 4.  

 

 
Figure 4: Interference of single photons with indistinguishable paths 

Moreover, figure 5 shows the interference pattern of single photons when one of the paths of the interferometer was 

made distinguishable.  
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Figure 5: Interference pattern of single photons with distinguishable paths 

Distinguishability was obtained by placing two half-wave plates in the arms of the Mach Zehnder interferometer. 

One of the half-wave plates was used as a dummy plate to cancel the phase shift introduced by the other half-wave 

plate. The latter plate was oriented with its optic axis at 45 degrees from the vertical. Lastly, figure 6 shows the 

interference pattern of photons when a polarizer was placed at the output of the interferometer in addition to the 

half-wave plates.  

 
Figure 6: Interference of single photons with erased distinguishability 

 
5. Discussion and Conclusions 
 

A Mach Zehnder interferometer appears to be ideal to produce and manipulate multiple degree of freedom photonic 

states. Accordingly, the interference patterns resulting from these manipulations provide evidence of how photons 

can be used to store and process information. For example, the interference pattern presented in figure 4 results from 

allowing the photons to travel trough the interferometer without making their paths distinguishable. That is, whether 

a photon is reflected or transmitted at a particular beam splitter, or how a photon reaches the detector is unknown.  
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The fact that an interference pattern is observed implies that the information encoded in the polarization state of the 

photons travelling through the interferometer is encoded when the paths taken by the photons remains 

indistinguishable.  

   On the other hand, when the paths taken by the photons in the interferometer is made distinguishable, the 

information that was previously encoded in the polarization state of the photons is now visible. The pattern 

presented in figure 5 shows that the photons do not interfere with themselves anymore due to the fact that their path, 

and therefore polarization state, is now distinguishable. Although making one of the photon paths distinguishable 

altered the sinusoidal interference pattern observed in figure 4, revealing the information encoded in the polarization 

state of the photons, the polarizer placed at the output of the interferometer erased this information. The interference 

pattern presented in figure 6 is evidence that by forcing the photons’ polarization to a particular state as determined 

by the polarizer, the interference pattern reappears. That is, the polarizer erased the information that had previously 

been uncovered by the half-wave plate.  

   As a means of comparison, the probability curves suggested by equations 13, 15, and 17 are shown in figure 7.  

The red, solid line represents the probability of detecting photons in coincidence when the paths of the 

interferometer are indistinguishable. On the other hand, the flat, solid, blue line represents the probability of 

detecting photons when the path they took was made distinguishable. The reduced amplitude green line represents 

the interference pattern of photons when a polarizer was placed at the output of the interferometer, causing the 

interference pattern to reappear. Notice that the interference pattern presented in figure 4 resembles the red solid 

curve in figure 7. Similarly, the data presented in figure 5, where the paths taken by the photons is distinguishable, 

resembles the blue flat line in figure 7. Moreover, notice that the probability of detecting coincidences when the 

photon paths are distinguishable is constant and equal to one half. The data in figure 5 closely follows a constant 

value as well, which is approximately one half of the maximum amplitude seen in figure 4. Lastly, the data 

presented in figure 6 follows a reduced amplitude interference pattern, which resembles the green, reduced 

amplitude interference pattern observed in figure 7.  The reduced amplitude results from the fact that the polarizer 

placed at the output of the interferometer blocks 50% of the photons passing through it. Furthermore, notice that the 

sinusoidal pattern shown in figure 4 is 180 degrees out of phase with the pattern observed in figure 6. A similar 

trend is observed in figure 7 where both the red and green solid lines appear out of phase by a similar amount. These 

correlations demonstrate that the probability of detecting photons at the output of the interferometer is proportional 

to the number of coincidences measured.  

 

 
Figure 7: Probability of detecting photons in coincidence 

   The data presented above demonstrates that four-degree-of-freedom photonic states can be produced using linear 

optical elements, and can be measured using coincidence counting electronics. In addition, these photons can be 

manipulated, and the photonic states resulting from these manipulations contain information that can be visible or 

invisible, depending on the type of manipulation. In the case where the path taken by the photons traveling through  
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the interferometer is indistinguishable, the information encoded in their polarization state is invisible; this result is 

observed in the non-collapsing interference pattern. On the other hand, when the path taken by the photons traveling 

through the interferometer is distinguishable, the information encoded in their polarization state is visible, and the 

interference pattern disappears. Moreover, this visible information can be reverted to its original state by using a 

polarizer, as indicated by the reappearance of the interference pattern despite of the reduced amplitude. The fact that 

the experimental data shown above closely follows the trends of the probability curves calculated theoretically 

demonstrates that the probability of detecting coincidences given a particular setup is proportional to the number of 

coincidences detected. Lastly, the results from these experiments demonstrate that photonic states could be used as 

multiple degree of freedom qubits to perform computations provided that information can be encoded in the 

polarization state of photons.  
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