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Abstract 

 
How many different types of security do we need to ensure that our network is fully protected? Likewise, how do we 

effectively optimize a trucking route? While we have vastly different questions, our answer is the same. We apply 

edge-colorings on graphs to answer this question. Represent each terminal hub with a vertex, and each direct link 

between hubs with an edge between the two vertices. We call this collection of vertices and edges a graph. For each 

type of connection security, assign a distinct color to the corresponding edges. If we want to transfer information from 

hub 𝑢 to hub 𝑣 through a series of consecutive direct links between intermediate hubs, then we draw a path in 𝐺.  Our 

question now becomes, “Given a graph 𝐺, how many colors do we need for there to exist some edge-coloring where, 

between every two vertices 𝑢 and 𝑣 in 𝐺 there exists a 𝑢, 𝑣-path using 𝑘 different colors?” In other words, what is the 

𝑘-color connection number of 𝐺, or 𝑐𝑐𝑘(𝐺)? We show the 𝑘-color connection number for wheel graphs and provide 

upper bounds for complete bipartite graphs as well as doubly-chorded cycles of small length. In doing so, we improve 

on the conjecture by Coll et al. that 𝑐𝑐𝑘(𝐺) ≤ 2𝑘 − 1 for all graphs 𝐺. 

 
Keywords: Security, Network, Color 

 
 

1. Introduction 

 
A quick and secure mode of communication is pertinent and necessary in times of crisis. Li and Sun [3], describe how 

the transfer of sensitive information between separate entities may need to pass through a number of intermediaries. 

More specifically, consider the following situation. A network consists of roads, each section of which may contain 

its own security type. Supposing any information passed between two locations must enter at least 𝑘 different types 

of security checkpoints, how many different types of security does our network need? Accomplishing the task of 

securely passing information, made for an intractable problem. Thankfully, a graph theoretic model arose to more 

adequately address the issue. 

   A graph is a collection of points (vertices) that are adjoined by lines (edges). Let 𝑉(𝐺) and 𝐸(𝐺) denote the sets of 

vertices and edges in a graph 𝐺, respectively. Two edges sharing a vertex are adjacent, and a collection of adjacent 

edges and vertices in a graph is called a path. A path with an edge between the first and last vertices is a cycle. A cycle 

with 𝑛 vertices is denoted 𝐶𝑛. The length of a path or cycle is its number of edges. An edge-coloring on 𝐺 assigns a 

color to each edge in 𝐺. In 2015, Coll, Luu, Magnant, Martin, and Pyron [2] defined a graph 𝐺 to be 𝑘-color connected 

if between every two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺), there is a 𝑢, 𝑣-path in 𝐺 with at least 𝑘 differently colored edges. The 𝑘-

color connection number of a graph 𝐺, denoted 𝑐𝑐𝑘(𝐺), is the minimum number of colors needed to make 𝐺 𝑘-color 

connected. 
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                   4-edge-colored graph                                                                                5-edge-colored graph 

 

The idea of 𝑘-color connectivity was inspired by Chatrand, Johns, McKeon and Zhang, who in 2008 [1] defined a 

rainbow path to be a path whose edges all had different colors, and an edge-colored graph to be rainbow connected if 

every pair of vertices contain a rainbow path between them. Additionally, the authors of [1] defined the rainbow 

connection number of a graph 𝐺 to be the minimum number of colors needed for 𝐺 to be rainbow colored. Both 𝑘-

color connectedness and the 𝑘-color connection number are similar to their rainbow counterparts, the difference being 

that a 𝑘-color connected graph may have repeated colors on the same path so long as there are enough different edge 

colors. 

   Chartrand et al. established the rainbow connection number for (most notably) multipartite, complete, and complete 

bipartite graphs. Coll et al. found the 𝑘-color connection number for complete graphs, and cycles and showed the lack 

of existence of a 𝑘-color connection number for any graph, 𝐺, with a bridge, 𝑒 ∈ 𝐸(𝐺) where 𝐺 − 𝑒 is disconnected, 

for 𝑘 > 1. Coll et al. also found the 𝑘-color connection number for wheel graphs, but their coloring needed 

modification. We present the modified coloring in Section 2. We also provide an upper bound for 𝑐𝑐𝑘(𝐾𝑚,𝑛) in the 

same section. 

   Our main results are in Section 3, where we improve on the following conjecture by Coll et al.   

 

Conjecture 1 (Coll et al. [2]). For any graph 𝐺 for which 𝑐𝑐𝑘(𝐺) exists, 

 

 

𝑐𝑐𝑘(𝐺) ≤ 2𝑘 − 1. 
 

 

   Conjecture 1 would certainly be sharp by assigning each edge of 𝐶2𝑘−1 a unique color. We improve on Conjecture 1 

by determining the 𝑘-color connection number for a cycle 𝐶 with two chords, edges outside the 𝐶 between two vertices 

in 𝐶. Now, for ℓ = 2𝑘 − 2𝑡 − 2, define 𝐶ℓ
∗∗ to be 𝐶ℓ ∪ {1, 𝑘 − 𝑡} ∪ {𝑡 + 2, 𝑘 + 1}. For ℓ = 2𝑘 − 2𝑡 − 3, define 𝐶ℓ

∗∗ 

as 𝐶2𝑘−2𝑡−3 ∪ {1, 𝑘 − 𝑡 − 1} ∪ {𝑡 + 2, ⌈
2𝑘−𝑡−3

2
⌉}. 

Theorem 1 Letting 𝐶ℓ
∗∗ where ℓ = 2𝑘 − 2𝑡 − 2 or 2𝑘 − 2𝑡 − 3, 𝑐𝑐𝑘(𝐶ℓ

∗∗) = ℓ − 2. 

We conclude in Section 4 by showing that to prove Conjecture [2k-1], it suffices to find the 𝑘-color connection number 

for all chorded cycles. 
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2. Minor Results 

 
Before presenting our results for chorded cycles, we first state the 𝑘-color connectivity of complete bipartite graphs 

and wheel graphs. A complete bipartite graph is a graph consisting of vertex sets 𝐴 and 𝐵 such that two vertices are 

adjacent if and only if one is in 𝐴 and the other is in 𝐵. When |𝐴| = 𝑚 and |𝐵| = 𝑛, the complete bipartite graph is 

denoted 𝐾𝑚,𝑛. 

 
Theorem 2 For all integers 𝑘 ≥ 1, we have 𝑐𝑐𝑘(𝐾𝑘

2
+1,

𝑘

2
+1

) ≤ 𝑘 + 3. 

 

For 𝑘 < 3 we see 𝐶4 and so 𝑐𝑐𝑘(𝐶4) = 𝑘, the number of edges in 𝐾𝑘

2
+1,

𝑘

2
+1

 is less than 2𝑘 − 1, so suppose 𝑘 ≥ 3. 

We can view 𝐾𝑘

2
+1,

𝑘

2
+1

 as a cycle with 
𝑘

2
− 1 chords in each of 

𝑘

2
+ 1 matchings. Use 𝑘 + 2 edge colors to color 

consecutive cycle edges until all colors have been used. Use one edge color, distinct from those used on the cycle, to 

color all remaining edges. 

 

    

                       6-color connected 𝐾4,4                                                                     8-color connected 𝐾5,5 

Next, we outline the method used to follow a path with 𝑘 colors.Suppose |𝑖 − 𝑗| > 2, and without loss of generality, 

let 𝑖 = 1. If 𝑗 is odd, then let 𝑃1,𝑗 = 𝑣1𝑣2 … 𝑣𝑗−2𝑣𝑘+2𝑣𝑘+1 … 𝑣𝑗 . If 𝑗 is even, then let 𝑃1,𝑗 = 𝑣1𝑣2 … 𝑣𝑗−1𝑣𝑘+2𝑣𝑘+1 … 𝑣𝑗. 

Now let |𝑖 − 𝑗| ≤ 2. Without loss of generality, let 𝑖 = 1. If 𝑗 >
𝑘

2
+ 1, then let 𝑃1,𝑗 = 𝑣1𝑣𝑘+2 … 𝑣𝑗 . If 𝑗 <

𝑘

2
+ 1, then 

let 𝑃1,𝑗 = 𝑣1𝑣2 … 𝑣𝑗 . 

Coll et al. showed in [2] that the for a graph 𝐺 with subgraph 𝐻, 𝑐𝑐𝑘(𝐺) ≤ 𝑐𝑐𝑘(𝐻). We use their result to generalize 

Theorem 2 for all complete bipartite graphs. 

Theorem 3 ([2]) A 2-connected graph 𝐺 containing a subgraph 𝐻 with 𝑐𝑐𝑘(𝐻) = 𝑙 satisfies 𝑐𝑐𝑘(𝐺) ≤ 𝑐𝑐𝑘(𝐻). 

Corollary 4 For all integers 𝑚, 𝑛 ≥ ⌈
𝑘

2
⌉ + 1, we have 𝑐𝑐𝑘(𝐾𝑚,𝑛) ≤ 𝑘 + 3. 

See Theorem 3. 

The wheel graph on 𝑛 vertices, denoted 𝑊𝑛, is defined as 𝐶𝑛−1 + {𝑣0}. Where the union of the 

vertex 𝑣0 and 𝐶𝑛−1 results in 𝑣0 being adjacent to all 𝑣 ∈ 𝑉(𝐶𝑛−1). 

Theorem 5 For 1 ≤ 𝑘 ≤ 𝑛 − 1, we have 𝑐𝑐𝑘(𝑊𝑛) = 𝑘 + 1. 
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Note that Theorem 5 was stated and proved in [2]; however, the coloring required modification. 

 

4-color connected 𝑊5 

 

Using a vertex labeling {𝑣0, … , 𝑣𝑛−1}, where 𝑣0 is the hub vertex. Color the edges {𝑣1𝑣2, … , 𝑣𝑛−1𝑣1} using distinct 

colors. Now, for 𝑣𝑖𝑣𝑗 , color 𝑣0𝑣𝑖 using the same color. Without loss of generality, we follow, 

 

 

𝑃1,𝑗 = 𝑣1𝑣2 … 𝑣𝑗−1𝑣0𝑣𝑛𝑣𝑛−1 … 𝑣𝑗 . 

 

 

Necessarily, we must consider ending at the hub vertex, 𝑣0, of 𝑊𝑛, 

 
 

𝑃1,0 = 𝑣1𝑣2 … 𝑣𝑛𝑣0. 
 

 

3. Main Results 

 
Before stating our main results, we define a few necessary terms and state an immediate but helpful fact. 

   Two pairs of vertices (𝑢, 𝑣) and (𝑥, 𝑦) on a cycle 𝐶 are parallel if there exists a consecutive labeling of the vertices 

on 𝐶 such that 𝑢 ≤ 𝑥 < 𝑦 ≤ 𝑣. Two chords 𝑢𝑣 and 𝑥𝑦 are parallel if their corresponding pairs (𝑢, 𝑣) and (𝑥, 𝑦) are 

parallel. Likewise, (𝑢, 𝑣) and (𝑥, 𝑦) are intersecting if they are not parallel. Additionally, two chords 𝑢𝑣 and 𝑥𝑦 are 

intersecting if (𝑢, 𝑣) and (𝑥, 𝑦) are intersecting. 

Fact 1 A parallel chord to the pair (𝑢, 𝑣) does not increase the length of the longest 𝑢, 𝑣-path. 
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𝐶𝑛 with diameter chord 

We now prove several results for even and odd doubly-chorded cycles. For the rest of the paper, let ℓ = 2𝑘 − 2𝑡 − 2 

with 𝑡 ≥ 1 and 𝑘 ≥ 3 + 5𝑡, or let ℓ = 2𝑘 − 2𝑡 − 3 with 𝑡 ≥ 1 and 𝑘 ≥ 6 + 5𝑡. 

A diameter chord on a cycle of length ℓ is a chord between vertices 𝑢 and 𝑢 + ⌊
ℓ

2
⌋ (mod ℓ). We first prove that every 

doubly-chorded cycle of length ℓ contains a diameter chord. We then show that precisely one doubly-chorded cycle 

of length ℓ (up to symmetry) has a path of length at least 𝑘 between all pairs of vertices. Note that this condition is 

necessary, but not sufficient, for 𝑘-color connectedness. We then state our main result, that 𝑐𝑐𝑘(𝐶ℓ
∗∗) = ℓ. 

 

Lemma 1 The chords of a 𝑘-color connected doubly-chorded ℓ-cycle are both diameter chords. 

 

For ease of notation, we refer to vertices 𝑣𝑖 by their label 𝑖. Consider a single-chorded ℓ-cycle 𝐶∗∗ with a non-diameter 

chord. Without loss of generality, let one chord be an edge from 1 to 𝜒 with 𝜒 ∈ {3, … , ⌊
ℓ

2
⌋}, while the second may be 

in any location such that the two chords are intersecting. We claim that for every vertex 𝑖 ∈ {𝜒 + 1, … , ℓ}, there is 

some vertex 𝑣𝑗 in 𝐶∗∗ such that 𝐶∗∗ contains no 𝑣𝑖 , 𝑣𝑗-path of length at least 𝑘. By Fact 1, there are no paths of length 

at least 𝑘 between 𝑣1 and any vertex in {⌊
ℓ

2
⌋ − 𝑡 + 1, … , 𝑘}; analogously, there are no paths of length at least 𝑘 between 

vertex 𝜒 and any vertex in {⌊
ℓ

2
⌋ + 1 − 𝑡 + 𝜒 − 1, … , 𝑘 + 𝜒 − 1}. (If 𝑘 + 𝜒 − 1 > ℓ, then subtract ℓ.) Also by Fact 1, 

each vertex 𝑖 ∈ {𝜒, … , ⌊
ℓ

2
⌋ − 𝑡} contains no path of length at least 𝑘 to vertex 𝑖 + ⌊

ℓ

2
⌋ (mod ℓ); analogously, each vertex 

𝑗 ∈ {𝑘 + 𝜒 − 1, … , ℓ} contains no path of length at least 𝑘 to vertex 𝑗 + ⌊
ℓ

2
⌋ (mod ℓ). Hence, we only need to show 

that for each vertex in 𝑆 = {𝑘 + 1, … , ⌊
ℓ

2
⌋ + 1 − 𝑡 + 𝜒 − 2}, there is some vertex to which there is no path of length at 

least 𝑘. Note that for 𝑆 ≠ ∅ if and only if 𝑘 + 1 ≤ ⌊
ℓ

2
⌋ + 1 − 𝑡 + 𝜒 − 2, or 𝜒 ≥ 2𝑡 + 3. 

We show that each 𝑖 ∈ 𝑆 such that 𝑖 < ⌊
ℓ

2
⌋ +

𝜒+1

2
 has no path of length at least 𝑘 to the vertex 𝑖 + (𝑘 − 1) − ℓ. Note 

that there are only two paths from vertex 𝑖 to vertex 𝑖 + (𝑘 − 1) − ℓ that use the chord 1𝜒. Those two paths are 𝑃1 =
{𝑖, 𝑖 + 1, … , ℓ, 1, 𝜒, 𝜒 − 1, … , 𝑖 − 𝑘 + 2𝑡 + 1} and 𝑃2 = {𝑖, 𝑖 − 1, … , 𝜒, 1, … , 𝑖 + (𝑘 − 1) − ℓ}. The path 𝑃1 has length 

(ℓ + 1 − 𝑖) + 1 + 𝜒 − (𝑖 + (𝑘 − 1) − ℓ) = 2ℓ − 𝑘 − 2𝑖 + 𝜒 + 1. Now, since 𝑘 + 1 ≤ 𝑖 < ⌊
ℓ

2
⌋ +

𝜒+1

2
, we have ⌊

ℓ

2
⌋ +

2 + 𝑡 < ℓ + ⌊
ℓ

2
⌋ + 1 − 𝑡 − 2𝑖 + 𝜒 + 1 < 𝑘 − 4𝑡 + 𝜒 − 3 < 𝑘. Similarly, we see 𝑃2 has length 𝑖 − 𝜒 + 1 + (𝑖 + (𝑘 −

1) − ℓ) − 1 = 2𝑖 − ℓ + 𝑘 − 𝜒 − 1 < ℓ + 𝜒 + 1 − ℓ + 𝑘 − 𝜒 − 1 ≤ 𝑘. So all vertices 𝑖 ∈ 𝑆 have no path of length at 

least 𝑘 to the vertex 𝑖 + (𝑘 − 1) − ℓ. 

Next, we show that each 𝑗 ∈ 𝑆 such that 𝑗 > ⌊
ℓ

2
⌋ +

𝜒+1

2
 has no path of length at least 𝑘 to the vertex 𝑗 − (𝑘 − 1). As 

before, there are only two paths 𝑃3 = {𝑗, 𝑗 + 1, … , ℓ, 1, 𝜒, 𝜒 − 1, … , 𝑗 − (𝑘 − 1)} and 𝑃4 = {𝑗, 𝑗 − 1, … , 𝜒, 1, … , 𝑗 −
(𝑘 − 1)}. The path 𝑃3 has length (ℓ + 1 − 𝑗) + 1 + 𝜒 − 𝑗 + 𝑘 − 1 = ℓ + 𝑘 − 2𝑗 + 𝜒 − 1 < ℓ + 𝑘 − (ℓ + 1 + 𝜒) +
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𝜒 − 1 = 𝑘; similarly, the path 𝑃4 has length (𝑗 − 𝜒) + 1 + (𝑗 − 𝑘 + 1) − 1 = 2𝑗 − 𝑘 − 𝜒 + 1 < (ℓ + 1 + 𝜒) − 𝑘 −
𝜒 + 1 < 𝑘. 

Lastly, we consider the case when 𝜒 is odd and the vertex 𝑚 = ℓ +
𝜒+1

2
 exists. There is no path of length at least 𝑘 

from 𝑚 to 𝑚 − (𝑘 − 𝑡 − 1) =
𝜒+1

2
. Neither the path 𝑃5 = {𝑚, 𝑚 + 1, … , ℓ, 1, 𝜒, 𝜒 − 1, … ,

𝜒+1

2
} nor 𝑃6 = {𝑚, 𝑚 −

1, … , 𝜒, 1, … ,
𝑚+1

2
} has length 𝑘. For 𝑃5 has length ℓ + 1 − 𝑚 + 1 + 𝜒 −

𝜒+1

2
= ⌊

ℓ

2
⌋ + 1 − 𝜒 < 𝑘, and 𝑃6 has length 

𝑚 − 𝜒 + 1 +
𝑚+1

2
− 1 =

𝑚−1

2
− 𝜒 < 𝑘. 

Since every vertex in {𝜒 + 1, … , ℓ} lacks a long enough path to some vertex in 𝐶∗, no additional chord to any of these 

vertices can lengthen every path. Any other chord included in 𝐶∗ would be parallel to the pair (1, 𝑘 − 1), which by 

Fact 1 would still not have a path of length at least 𝑘. Hence, 𝐶∗∗ is not 𝑘-color connected. 

 

A 𝐶12 where dashed lines show vertices without a path of length 𝑘 

Now we consider the doubly chorded cycle 𝐶2𝑘−2𝑡−2
∗∗  defined as 𝐶2𝑘−2𝑡−2 ∪ {1, 𝑘 − 𝑡} ∪ {𝑡 + 2, 𝑘 + 1}. 

Lemma 2 𝐶ℓ
∗∗ contains a path of length at least 𝑘 between all pairs of vertices. 

We show there is always a 𝑣𝑖 , 𝑣𝑗-path in 𝐺 of length at least 𝑘 in 𝐶ℓ
∗∗ = 𝐶ℓ ∪ {1, ⌊

ℓ

2
⌋ + 1} ∪ {𝑡 + 2, 𝑘 + 1}. Notice that 

for 𝑣𝑖 in 𝐶ℓ where 𝑖 = {1, … , ℓ}, the vertices under scrutiny are all 𝑣𝑗 where 𝑗 = {𝑖 + ⌊
ℓ

2
⌋ + 2𝑡 − 1, … , 𝑖 + ⌊

ℓ

2
⌋ −

1}modℓ, as 𝑣𝑖 clearly has a path of length at least 𝑘 to all other vertices. The two chords separate the cycle into 

quadrants, two large and two small. Without loss of generality, we examine three cases, due to the symmetry of the 

𝐶ℓ, namely, when a vertex is incident on a chord, when a vertex is contained in a quadrant of length 𝑡 + 2, and when 

a vertex is contained in a quadrant of length ⌊
ℓ

2
⌋ − 𝑡 − 1. 
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𝐶ℓ where 𝑘 = 8 and 𝑡 = 1 

𝑣𝑖 = 𝑣1 
 

Let 𝑃 be a longest 𝑣𝑖 , 𝑣𝑗-path in 𝐶ℓ; hence, we have 

 

𝑃 = 𝑣1, 𝑣ℓ, … , 𝑣𝑘+1, 𝑣𝑡+2, 𝑣𝑡+3, … , 𝑣
⌊
ℓ
2

⌋+1
. 

 

Observe that |𝑃| = ℓ − 𝑡 − 1 ≥ 𝑘. 

 

Let 𝑖 ∈ {ℓ + 4, … , 𝑘 + 2}modℓ and 𝑗 ∈ {𝑖 + ⌊
ℓ

2
⌋ + 2𝑡 − 1, … , 𝑖 + ⌊

ℓ

2
⌋ − 1}modℓ. 

 

Let 𝑃1, 𝑃2 be two longest 𝑣𝑖 − 𝑣𝑗-paths in 𝐶ℓ
∗∗, 

 

𝑃1 = 𝑣ℓ, 𝑣1, … , 𝑣𝑘+1, 𝑣𝑡+2, 𝑣𝑡+3, … , 𝑣
⌊
ℓ
2

⌋+1−𝑡
, … , 𝑣

⌊
ℓ
2

⌋
; 

 

𝑃2 = 𝑣ℓ, 𝑣1, … , 𝑣𝑘+1, 𝑣𝑡+2, 𝑣𝑡+3, … , 𝑣
⌊
ℓ
2

⌋+1
. 

 
Observe that the length of 𝑃1 is ℓ − 1 ≥ 𝑘 + 3𝑡, while the length of 𝑃2 is ℓ − 2𝑡 − 2 ≥ 𝑘 + 𝑡 − 1, which is greater 

than or equal to 𝑘 as a result of 𝑡 ≥ 1. 

Let 𝑖 ∈ {2, … , 𝑡 + 1}modℓ and 𝑗 ∈ {𝑖 + ⌊
ℓ

2
⌋ + 2𝑡 − 1, … , 𝑖 + ⌊

ℓ

2
⌋ − 1}modℓ 

Again, we choose two longest paths, 𝑃1, 𝑃2 in 𝐶ℓ
∗∗ such that, 

 

𝑃1 = 𝑣𝑡+1, 𝑣𝑡+2, … , 𝑣𝑘−𝑡 , 𝑣1, 𝑣ℓ, … , 𝑣
⌊
ℓ
2

⌋+2
; 

 

𝑃2 = 𝑣𝑡+1, … , 𝑣1, 𝑣ℓ … , 𝑣𝑘+1, 𝑣𝑡+2, 𝑣𝑡+3, … , 𝑣
⌊
ℓ
2

⌋+1
. 

 
The length of 𝑃1 is ℓ − 𝑡 − 1 ≥ 𝑘 + 2𝑡, which is certainly greater than 𝑘. Next, we can see that the length of 𝑃2 is 
3

2
ℓ − 2𝑡 − 1 ≥ 2𝑘 − 1, which again is larger than 𝑘. 
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           Case 1 for 𝑘 = 8, 𝑡 = 1         Case 2 for 𝑘 = 8, 𝑡 = 1         Case 3 for 𝑘 = 8, 𝑡 = 1 

 

Lemma 3 𝐶ℓ
∗∗ is the only 𝑘-color connected doubly-chorded cycle. 

 

Let 𝑡 ≥ 1, and first consider 𝐶ℓ
∗∗. By Lemma 5, we only need to show that no other doubly-chorded cycles besides 𝐶ℓ

∗∗ 

contain a path of length at least 𝑘 between all pairs of vertices. We attempt to construct such a doubly-chorded cycle 

𝐶∗∗. By Fact 2, we know that 𝐶∗∗ must contain a diameter chord between (without loss of generality) vertices 1 and 

⌊
ℓ

2
⌋ + 1. We now show that the other chord must be a diameter chord between 𝑡 + 2 and 𝑘 + 1 (or, equivalently, 

between ⌊
ℓ

2
⌋ − 𝑡 and ℓ − 𝑡 − 1), or else there is some pair of vertices without a path of length at least 𝑘 between them. 

By Fact 1, vertex 1 has no path of length at least 𝑘 to any vertex in {⌊
ℓ

2
⌋ + 1 − 𝑡, … , 𝑘}; likewise, vertex ⌊

ℓ

2
⌋ + 1 has 

no path of length at least 𝑘 to any vertex in {ℓ − 𝑡 + 1, … , 𝑡 + 1}. Since the diameter chord from 1 to ⌊
ℓ

2
⌋ + 1 only 

increases the length of a maximum path starting at ⌊
ℓ

2
⌋ + 2 or 

3ℓ+4

4
 by at most 1, by Fact 1, we also have that vertex 

⌊
ℓ

2
⌋ + 2 has no path of length at least 𝑘 to any vertex in {

3ℓ−2𝑡+8

4
, … ,

3ℓ−4𝑡

4
}; likewise, vertex 

3ℓ+4

4
 has no path of length 

at least 𝑘 to any vertex in {
ℓ−4𝑡+8

4
, … ,

ℓ+4𝑡

4
}. 

 

Since 𝑘 ≥ 5𝑡 + 3, we have 
3ℓ−4𝑡+8

4
≥ 𝑘 + 2 and 

𝑘−4𝑡+8

4
≥ 𝑡 + 3. The only chords that are not parallel to all vertex 

pairs without a long enough path are the chords between (𝑡 + 2, 𝑘 + 1) (or, equivalently, between (⌊
ℓ

2
⌋ − 𝑡, ℓ − 𝑡)). 

 

Theorem 1 𝑐𝑐𝑘(𝐶ℓ
∗∗) = ℓ − 2. 

 

Assign a unique color to the edges {𝑣1𝑣2, … , 𝑣ℓ𝑣1}. Next, for {𝑣1, 𝑣
⌊

ℓ

2
⌋+1

} assign the same color as {𝑣𝑡+1, 𝑣𝑡+2}, and 

for {𝑣𝑡+2, 𝑣𝑘+1} use the color from {𝑣
⌊

ℓ

2
⌋+2𝑡

, 𝑣𝑘+1}. Observe that any 𝑢, 𝑣 adjacent on the cycle have a path of length 

ℓ − 1 between them, which has a path using ℓ − 1 colors. Without loss of generality, we consider the same paths as 

those used in Lemma 5. For all path lengths considered, notice that subtracting each by 2 represents the fewest number 

of colors possible on each, due to only 2 edge colors being reused. This is only problematic for 𝑃2 in Case 2, which 

was specified as 𝑃2 = 𝑣ℓ, 𝑣1, … , 𝑣𝑘+1, 𝑣𝑡+2, 𝑣𝑡+3, … , 𝑣
⌊

ℓ

2
⌋+1

, and had length ⌊
ℓ

2
⌋ + 2. The length of 𝑃2 means that we 

could have ⌊
ℓ

2
⌋ + 2𝑡 − 2 different colors. However, because 𝑃2 uses only one chord, and neither of the two sections of 

length 𝑡 + 1, it cannot reuse a color. This means that 𝑃2 must have a path with ⌊
ℓ

2
⌋ + 2𝑡 colors. 
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4. Conclusion 

 
We conclude by showing that Conjecture 1 can be proved if one knows the 𝑘-color connection number for all chorded 

cycles. We first state three results by Coll et al. from [2]. Before we do so, a graph is 2-connected if for every pair of 

vertices in 𝐺, there is a cycle containing both. 

 
Theorem 6 Let 𝐾𝑛 denote the complete graph on 𝑛 vertices. 

 

1. For 𝑘 ≥ 3 and 𝑛 ≥ 𝑘 + 1, we have 𝑐𝑐𝑘(𝐾𝑛) = 𝑘. 

 

2. For 𝑛 ≥ 3 and 𝑘 > 1, we have 

 

𝑐𝑐𝑘(𝐶𝑛) = {

𝐷𝑁𝐸 𝑖𝑓 𝑛 ≤ 2𝑘 − 2,
2𝑘 − 1 𝑖𝑓 𝑛 = 2𝑘 − 1, 𝑎𝑛𝑑

𝑘 𝑖𝑓 𝑛 ≥ 2𝑘.
 

 

3. A 2-connected graph 𝐺 containing a subgraph 𝐻 with 𝑐𝑐𝑘(𝐻) = 𝑙 satisfies 𝑐𝑐𝑘(𝐺) ≤ 𝑐𝑐𝑘(𝐻). 

 

Item 3 shows that the 𝑘-color connection number of 𝐺 depends only on the subgraphs of 𝐺. We now state our result. 

 
Theorem 7 Given 𝑘, let 𝑘 + 1 ≤ 𝑛 ≤ 2𝑘 − 2. Let 𝐶′ be a cycle on 𝑛 vertices that includes 0 ≤ 𝜒 ≤ 𝑛 − 3 chords. If 

for all 𝑘 and all 𝐶′ we have 𝑐𝑐𝑘(𝐶′) ≤ 2𝑘 − 1, then Conjecture 1 holds. 

 

By Theorem 6, the 𝑘-color connectivity of a graph is bounded above by the 𝑘-color connectivity of any of its 

subgraphs. As Coll et al. note, if 𝐺 is not 2-connected, then 𝑐𝑐𝑘(𝐺) does not exist for 𝑘 > 1, as there is some pair of 

vertices in 𝐺 whose only path between them is an edge. Hence, we only need to consider the 𝑘-color connection 

number of 2-connected subgraphs of 𝐺. 

   Since every 2-connected graph contains a cycle 𝐶 as a subgraph, if 𝑐𝑐𝑘(𝐶) exists, then we have 𝑐𝑐𝑘(𝐺) ≤ 𝑐𝑐𝑘(𝐶) ≤
2𝑘 − 1 by Theorem 6. However, if 𝑐𝑐𝑘(𝐶) does not exist, then consider the subgraph consisting of 𝐶 and all of its 

chords. Call this chorded cycle 𝐶′. If 𝑐𝑐𝑘(𝐶′) ≤ 2𝑘 − 1, then 𝑐𝑐𝑘(𝐺) ≤ 𝑐𝑐𝑘(𝐶′) ≤ 2𝑘 − 1. 

   We are currently working toward finding the 𝑘-color connection number of triply-chorded cycles. This result may 

be difficult to prove, however, as it appears the best-located chords are not diameter chords. 
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