
Proceedings of The National Conference

On Undergraduate Research (NCUR) 2017

University of Memphis, TN

Memphis, Tennessee

April 6-8, 2017

Optimal Path for Finding Randomly Distributed Targets

Samuel Norman

Computer Engineering

San Jacinto College

Pasadena, TX 77504 USA

Faculty Advisor: Prof. Nathanial Wiggins

Abstract

The NASA Swarmathon is a competition focused the development and optimization of search algorithms. The

objective of this competition is to design an algorithm for rover-robots in the effort of contributing to research toward

planetary exploration; these rovers must be able to find randomly distributed targets (or resources) and bring them to

a predesignated location. Further, the project uses NASA’s Swarmathon Robotic Operating System’s (ROS)

simulation environment for testing a variety of students designed and modified search patterns. The more

basic/outdated Gaussian Distribution algorithm, used in the competition, employs a random number generator to

determine the direction the rover travels to in its search. A drastic improvement to the Gaussian Distribution algorithm

uses a more chaotic approach - created by Edward Lorenz – the Lorenz attractor system models’ hydrodynamic fluid

flow which has a chaotic structure. The specific nature of the Lorenz attractor does not repeat values and maintains a

tight format, unlike the Gaussian Distribution method. This results in the added ability to cover an area more

thoroughly and with higher efficiency. This means that, if the Lorenz method for target acquisition is used, the rovers

will be more effective and efficient at collection than if the Gaussian distribution method is used. During testing,

eighteen successful simulations were executed in total, each lasting thirty recorded minutes. These tests used three

distinct target distribution methods, which showed that the average number of targets collected was greater using the

Lorenz algorithm. These results prove the conclusion that collecting randomly distributed targets is more efficient and

consistent with the Lorenz attractor path.

Keywords: Robotic Operating System, Lorenz Attractor, Chaos, Path Optimization

1. Introduction

Swarming technology is a field of robotics that is primarily inspired by nature. In fact, applications include package

delivery1, farming2, cleaning3, oceanic exploration4, exploration and chemical analysis on other planets5, and tritium

mining on the moon6. NASA plans to use swarming technology by implementing it into rovers to send to other planets.

Moreover, instead of sending a single multi-million-dollar robot and counting on a successful mission, NASA intends

to send a swarm of several thousand-dollar robots that communicate and collaborate to achieve tasks. In other words,

a swarm of robots that run autonomously to complete tasks are more productive while also lowering monetary risks.

 A related study of swarm robotics is the NASA Swarmathon: a robotics competition based on the development of

swarming technology. This competition focuses on the rovers’ collection and return of randomly distributed targets.

University of New Mexico participates as the admin team, which oversees the organization and writes the base code

that is implemented into the robots. Moreover, all the rover code is running in the Robotic Operating System (ROS)

distribution Indigo and is written in C++.

 The original search algorithm for the robot is called “random walk,” and it is based on an ant’s path for finding

resources7. In this search algorithm, the rover picks a random heading and drives in that direction for 50 centimeters

752

and then picks a new random heading. The heading is generated in radians from a combination of a random number

generator and a Gaussian distribution.

𝒇(𝒙 | 𝝁, 𝝈𝟐) =
𝟏

√𝟐𝝅𝝈𝟐
𝒆

−
(𝒙−𝝁)𝟐

𝟐𝝈𝟐 (1)

The Gaussian distribution is modeled in equation (1), where 𝜇 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑒𝑎𝑑𝑖𝑛𝑔, 𝜎2 = 0.25, 𝑥 =
𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟, and 𝑓(𝑥|𝜇, 𝜎2) = 𝑁𝑒𝑤 𝐻𝑒𝑎𝑑𝑖𝑛𝑔.

 The new proposed search algorithm is a projection of the Lorenz attractor, equation (2) and Figure 1, onto a 2D

plane.

{

𝒙̇ = 𝝈(𝒚 − 𝒙)

𝒚̇ = 𝒙(𝝆 − 𝒛) − 𝒚
𝒛̇ = 𝒙𝒚 − 𝜷𝒛

 𝝈 = 𝟏𝟎, 𝜷 =
𝟖

𝟑
, 𝝆 = 𝟐𝟖. (2)

Figure 1: Lorenz attractor generated in Chaoscope

The Lorenz attractor is a non-linear system of differential equations and was introduced by Edward Lorenz in 1963.

This system models hydrodynamic fluid flow without using a forcing method that would produce both periodic, and

non-periodic solutions in experiments8. However, independent solutions cannot be derived by this system from its

output8. The only way to be certain of the next number generated by the system is to know the system’s initial

conditions and the current iteration number8. In fact, the system of equations never repeats or intersects with itself.

This is because the original system is three-dimensional: the two-dimensional projection will have intersection points

but will not follow the same path. Essentially, this means the rover following the Lorenz path will not search the same

area twice.

 In the past, chaotic search patterns have been studied in the form of direct path optimization, yet the most successful

have been those of chaotic bee path optimization9, or chaotic paths to avoid threats10. These path optimizations are

based on running multiple iterations of chaotic decision-making to find a path toward a defined location. This differs

from finding the optimal path for discovery of randomly distributed targets. Current studies seem to show that, for the

detection of random targets, ant foraging patterns are the most efficient known model7.

753

2. Methodology and Results

The two operating systems that were used were Windows 10 and Linux Ubuntu 14.04. In Windows 10, Scilab was

used to generate the original function by graphing the numerical approximation of the Lorenz Attractor. This process

was completed with an ODE solver function which is internal to the program; the next step was to apply a two-

dimensional projection of the graph to generate a path for a rover to follow (on a two-dimensional plane). Specifically,

the Lorenz attractor time started at 10 time units, has a step size of 0.5, and ran until 20 time units.

After the projection, the points were centered at zero and two scale variables were created for the ‘x’ and ‘y’ direction,

respectively. This is because the simulation environment for the NASA Swarmathon is an 8m by 8m square; the scale

variables in Scilab were both set to 6m to allow for rover drift.

Figure 2: Robotic path generated in Scilab

The Scilab code’s output is in the form of a .csv: a Java program inside of Windows 10 that was then written in

NetBeans to translate the .csv into something that ROS could use. The Java program then read the .csv file, and created

two vectors internally from the points listed in the file. The same code counted the size of the vectors then generated

a file in C++ with the x and y coordinate arrays and an integer array (to function as multiple Booleans). This made it

possible to keep track of which points had already been reached by the rover and an integer representative of the size

of the arrays. Once the points were imported into ROS, the search controller code was modified to use the points

instead of random headings. When both C++ files were in the correct folder, the code was then complied. In ROS,

using catkin tools, the code then recompiled – but only if the “date modified” was more recent than the previously

compiled code. This compiling method is used to optimize compilation speed.

 Sometimes trying different algorithms meant switching back and forth between files frequently. To combat this

issue, each file had a new save version created so that the ROS would recognize the file that needed to be compiled.

This was done before compiling the code. After this, the code was compiled two times: to ensure that catkin

implemented the changed code into ROS. In the following step, ROS wan run inside Ubuntu 14.04 on a Dell Inspiron

13 with an Intel core i7-7700u: running Intel integrated graphics with 8GB of DDR4 memory. The complete Lorenz

path driven by the rover can be seen in Figure 3.

754

Figure 3: Lorenz attractor driven by rover in the ROS simulation environment

 Three different target distribution methods with 256 targets, each, were used to test the applicability of the search

methods in various situations. The Clustered distribution used 64 targets per cluster - 4 clusters were randomly placed

around the simulation environment. The Power Law distribution placed clusters randomly around the simulation

environment where the number of targets per cluster is always in perfect squares. The Uniform distribution placed

individual targets randomly in the simulation environment. Additionally, for each target distribution method, both the

Lorenz path and Random Walk search methods were run a total of three times, which resulted in eighteen complete

simulations being run.

 Each simulation was set to last an entirety of thirty minutes. In fact, there were cases where errors in the simulation

environment or errors in the rover code would cause them to malfunction. For example, if the rover became trapped,

a target got wedged in the rover’s gripper, or the rover got stuck inside the home target area and pushed all the targets

out. In these cases of rover error, the simulations were shut down and restarted. This is because the data to be tested

was in relation to the search method, not the functionality of the gripper or other similar systems. The generated world

was consistent, so the targets were placed unpredictably around the simulation; this provided a better sample of data

to pull from.

755

Figure 4: This graph illustrates the number of targets collected on each run of every target distribution and search

method

3. Conclusion

While finding random targets, the Lorenz attractor path is more consistent than the Random Walk path. This is

supported by the data because the Random Walk path is a combination of a random number generator and the Gaussian

distribution method. The Lorenz attractor path followed a specific path that had very little space between the searched

areas, which created a very thorough search algorithm. While the Random Walk had no defined shape, which caused

it to sometimes search the same area again. Due to the described structure of the Lorenz attractor, it outperformed the

Random Walk path in all target distribution arrangements, as seen in Figure 5.

17

19

24

13

19

20

9

9

9

3

16

19

13

12

15

4

2

20

0 5 10 15 20 25 30

Uniform Third Run

Uniform Second Run

Uniform First Run

Power Third Run

Power Second Run

Power First Run

Clustered Third Run

Clustered Second Run

Clustered First Run

Complete Rover data

Random Walk Lorenz Path

756

Figure 5: Graph of average number of targets collected in each target distribution by each search algorithm

 Some possibilities to expand upon this study would be to select and change a few of the environment’s elements.

The search area in this project is a pre-defined area and the Lorenz Path was scaled to fit this specification. Further, it

is possible that in an undefined or irregularly shaped search area, the Lorenz path would not perform as well because

of the areas that the rover would not encounter (due to the shape of the attractor). Moreover, the localization algorithm

used is based on distance traveled on a two-dimensional plane, therefore, changing the terrain of the search area would

affect the structure of the attractor and the path driven by the rover.

4. References

1. Claes, Rutger, Tom Holvoet, and Jelle Van Gompel. 2010. "Coordination in hierarchical pickup and delivery

problems using delegate multi-agent systems." Proceedings of the 4th Workshop on Artificial Transportation Systems

and Simulation 1-7.

2. Anil, H., K. S. Nikhil, V. Chaitra, and BS Guru Sharan. 2015. "Revolutionizing farming using swarm

robotics." Intelligent Systems, Modelling and Simulation (ISMS), 2015 6th International Conference 141-147.

3. Altshuler, Yaniv, Alfred M. Bruckstein, and Israel A. Wagner. 2005. "Swarm robotics for a dynamic cleaning

problem." Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE 209-216.

4. Schmickl, Thomas, Ronald Thenius, Christoph Moslinger, Jon Timmis, Andy Tyrrell, Mark Read, James

Hilder et al. 2011. "CoCoRo--The Self-Aware Underwater Swarm." Self-Adaptive and Self-Organizing Systems

Workshops (SASOW), 2011 Fifth IEEE Conference 120-126.

5. Sand, Stephan, Siwei Zhang, Maximilian Mühlegg, Guillermo Falconi, Chen Zhu, Thomas Krüger, and

Stefan Nowak. 2013. "Swarm exploration and navigation on mars." Localization and GNSS (ICL-GNSS), 2013

International Conference 1-6.

6. Schmitt, Harrison H. 2004. "Mining the Moon." Popular Mechanics 12.

7. Forrest, Stephanie, Melanie E. Hecker, and Drew Levin. 2015. "Volatility and spatial distribution of resources

determine ant foraging strategies." European Conference on Artificial Life (ECAL).

8. Lorenz, Edward N. 1963. "Deterministic nonperiodic flow." Journal of the atmospheric sciences, 20(2) 130-

141.

9. Huang, Li-Ren, and Jiann-Horng Lin. 2009. "Chaotic Bee Swarn Optimization Algorithm for Path Planning

of Mobile Robots." WSEAS Internation Conference on EVOLUTIONARY COMPUTING.

10. Volos, Ch. K., I. M. Kyprianidis, and I. N. Stoudoulos. 2012. "A chaotic path planning generator for

autonomous mobile robots." Robotics and Autonomous Systems 60, no. 4 651-656.

9

17.3

20

8.666666667

13.33333333 12.66666667

0

5

10

15

20

25

Clustered Distribution Power Law Distribution Uniform Distribution

Average Number of Targets Collected

Lorenz Path Random Walk

