
Proceedings of The National Conference
On Undergraduate Research (NCUR) 2015

Eastern Washington University, Cheney, WA
April 16-18, 2015

An Architecture For Intentional Agents With Reactive Behavior

Alex Gain, Graham Haug
Department of Computer Science

Texas Tech University
2500 Broadway

Lubbock, Texas 79409 USA

Faculty Advisor: Yuanlin Zhang

Abstract

This paper is centered on the design and implementation of intelligent agents. Recently, an architecture has been pro-
posed which relies on the notion of intention1. In this work, intentions are related to agent beliefs, goals, and actions
and are employed to solve a key problem at the center of intelligent behavior: selecting the next action for the agent to
perform. However, this existing architecture results in agents which are driven only by their goals but cannot respond
to domain triggers in a timely manner. For example, if an agent populates a room and the room is observed to be on
fire, the agent’s next action should be to leave the room regardless of its current goal and plan. The goal of our research
is to design and implement an architecture for intentional agents that can react to environmental triggers regardless of
the current goals and plans and allow for the agent to resume goal-driven behavior afterwards. Our design is based on
well-established knowledge representation paradigms: Answer Set Prolog (ASP) and Action Language (AL). These
languages have been very effective for describing possible agent actions and details of an agent’s environment, both
of which contribute to the agent’s knowledge base. In order to expand the functionality of agents to allow for reactive
behavior, we first modify Action Language (AL) to allow statements for triggered actions that describe how agents
should respond to outside changes. We explicitly define the syntax and semantics for this newly modified AL. We
extend the Theory of Intentions (TI) to allow these triggered actions to be treated as intended actions. We design
and write ASP programs which will automatically implement any necessary reasoning tasks in the architecture. With
these extensions, the architecture for intentional agents is expanded to allow agents featuring reactive behavior capa-
bility. Lastly, we discuss ideas for future improvements and expansions. Our research demonstrates that we can design
intention-driven agents that can react to dynamic environments by utilizing Action Language and Answer Set Prolog.

Keywords: Artificial Intelligence, Knowledge Representation, Declarative Programming

1 Introduction

The Architecture for Intentional Agents1 (AIA) is a means for the design and implementation of intelligent agents.
Agents under the AIA architecture are intention-driven, creating plans and following them in order to achieve a goal
in a dynamic environment. They are necessarily rational, that is they only believe what they are forced to believe by
logical consequence of given constraints and rules. They are capable of making inferences about the past to explain
unexpected observations.

For example, if an agent observes a glass of water on a table at one moment in time and then later observes it in a
different location, it may update its history to include the action of someone moving it.

A missing functionality of agents under the AIA architecture is the ability to instinctively react to triggers in the
environment and then resume intentional behavior. Consider the following example:

Example [Building on Fire]
Consider the case where intelligent agent Bob has a goal to meet his coworker John in their company building. Bob

642



Figure 1: Illustration of Building on Fire example.

is initially in room 1 and John is initially in room 4. Bob, under the AIA architecture, is intention-driven and starts
walking to room 4 to achieve his goal as quickly as possible. However, the building catches on fire. Because f ire is
a trigger, Bob puts his plan on hold and runs out of the building. Once he is safe and outside, he resumes his goal to
meet John.

The existing AIA architecture does not allow for this type of behavior. To achieve this, Action Language3 (AL)
needed to be expanded, several definitions and formalisms involving notions of triggers needed to be introduced, and
the previous AIA architecture needed to be modified.

2 Background

2.1 Answer Set Prolog (ASP)

ASP is a declarative language for knowledge representation. Roughly speaking, its statements are logical statements
of the following forms: literals (facts), constraints, and if-then statements. Given a collection of ASP statements, ASP
solvers can be used to produce an answer set — a set of beliefs which must logically follow from the given statements.
Consider the following example:

Example [ASP program]
1. person(bob). (This is a literal.)
2. ¬dead(X)← alive(X). (This is an if-then statement and reads from right to left.)
3. ← alive(X), dead(X). (This is a constraint, saying that X cannot be both alive and dead at the same time.)
4. alive(X)← person(X), not dead(X). (Here, “not” means “there is no reason to believe.”)

In English, the ASP program reads as:
1. “bob is a person.”
2. “If X is alive then X is not dead.”
3. “X cannot be both alive and dead at the same time.”
4. “If X is a person and there is no reason to believe X is dead then X is alive.”

There are some statements or knowledge which can be logically deduced from these rules. The collection of all
of these statements is known as the answer set.

The answer set of this program is:
1. person(bob). (Deduced from line 1 of the ASP program.)
2. alive(bob). (Deduced from lines 1 and 4 of the ASP program. The conditionals in line 4 are satisfied because we

know bob is a person from line 1 and there is no reason to believe bob is dead)
3. ¬dead(bob). (Deduced from line 2 of this answer set and line 2 of the ASP program.)

643



The answer set reads as:
1. “bob is a person.”
2. “bob is alive.”
3. “bob is not dead.”

The beliefs and conclusions of the agent are directly determined by the answer sets produced by the ASP programs
of the agent. Thus, the agent is necessarily rational because it only believes what it is forced to believe by logical
consequence.
Chapter 2 of reference 1 covers ASP more thoroughly than here.
Ultimately, the entire AIA architecture can be translated into ASP for implementation purposes.

2.2 Action Language (AL)

AL is a language which can be used to represent state transition systems3. Intuitively, AL can be thought of as
representing a flowchart describing the state of the environment and the effects actions have on it.

Statements of AL contain statics, f luents, and actions. Fluents and statics can be thought of as properties of the
state. Fluents can be changed through actions whereas statics cannot. A domain literal is a domain property p or its
negation ¬p formed by a static or fluent. Literals formed by statics are called static literals, and literals formed by
fluents are called f luent literals.
Consider the following example which will illustrate the type of statements allowed in AL:

Example [AL: Chessboard]
Consider a chessboard. The current position of the board and its pieces is the current state in AL. The starting position
of the board would be the initial state in AL. Changes to this state can be described through actions. For example:

move(X, P) causes at(X, P)

Where move is an action and at is a fluent literal. This statement means moving piece X to position P will cause
X to be at position P. The position of a piece is considered a fluent literal because it can be changed through actions.
Contrarily, domain properties describing the layout of the board are considered static literals because they cannot be
changed through actions.
Other statements of AL are state constraints and executability conditions. For example:

alive(X) if at(X, P)

This is a state constraint and means that piece X is alive if piece X is at some position on the board. Another ex-
ample:

impossible move(X, P) if captured(X)

This is an executability condition and means that it is impossible to move piece X if piece X is captured.
Figure 1 illustrates this example.

The following is a formal definition of what was just covered:

Definition 1 (Statements of AL) Language AL allows the following types of statements:
1. Causal Laws:

a causes lin if p0, ..., pm

2. State Constraints:

l if p0, ..., pm

3. Executability Conditions:

644



Figure 2: A chess example illustrating action language, where σ0 and σ1 are states and action(e2e3) changes σ0 to σ1.

impossible a0, ...,ak if p0, ..., pm

where a is an action, l is an arbitrary domain literal, lin is a literal formed by an inertial fluent, p0, ..., pm are domain
literals, k > 0, and m≥ 1. Moreover, no negation of a defined fluent can occur in the heads of state constraints.1

All AL statements have translations into ASP, seen in Chapter 2 of reference 1. Additionally a more formal and
thorough review of AL can be found in Chapter 2 of reference 1.

2.3 The Architecture for Intentional Agents (AIA)

Agents under the AIA architecture are intention-driven, necessarily rational, and work to complete their goal as soon
as possible. This section will give an overview of the AIA architecture. There are more formal and precise explana-
tions of the AIA architecture1,2. For purposes of reading this paper, this concise section should provide enough of an
intuitive understanding of AIA for understanding the rest of this paper.

The AIA control loop describes the behavior of an intentional agent under the AIA architecture and was originally
the AAA control loop4.

Observe the world and initialize history with observations;
1. interpret observations;
2. find an intended action e;
3. attempt to perform e and update history with a record of the attempt;
4. observe the world, update history with observations, and go to step 1.

Figure 2: AIA Control Loop: The behavior of the intentional agent.

Multiple parts come together to produce this behavior. The AIA architecture can separated into these parts:

1. Theory of Intentions (TI)

2. Model of History

3. Description of Environment

For steps 1, 3, and 4 of Figure 1, Model of History and Description of Environment is needed. For step 2, T I is needed.

2.3.1 Theory of Intentions (T I)

T I is a collection of Action Language AL statements. It is a representation of properties of intention. T I is nec-
essary for the agent’s capability of selecting a goal, creating and selecting plans, and executing plans. Intuitively, it
can be thought of as comprising the mental state and mental rules of the agent.
As an example, select and abandon are for selecting and abandoning goals.

645



Figure 3: Example of an AL transition diagram for the agent’s mental and physical states.

select(G) causes active goal(G).
abandon(G) causes active goal(G).
where G is a goal.

As another example, status is for knowing if an activity (plan to achieve the goal) is active and what step it is on.
start will start an activity by making its status active. Similarly, stop will stop an activity by making its status inactive.
For example status(bake bread, 0) means activity (i.e. plan) bake bread is active, status(bake bread, 2) means activity
bake bread is active and on step 2, and status(bake bread, -1) means activity bake bread is inactive. The following are
the AL statements for start and stop:

start(M) causes status(M, 0).
stop(M) causes status(M, 1).

Additional statements specify how the status of the current plan, i.e. what step the plan is currently on, is incremented2.
The most important aspects of T I are keeping track of the status of plans and finding the next intended action of

the agent. As an example, here is one of the ASP statements for finding the intended action of the agent:

intended action(stop(M), I)← current step(I), interpretation(N, I), category 3(M, I), futile(M, I).

There is more background needed than what is covered here to fully understand this statement. For instance, “cate-
gory 3” refers to category of history which will be covered later. However, intuitively this statement says that if the
agent is in the middle of executing a plan, but the plan is not expected to achieve the goal, then the next action of the
agent should be to stop its current plan. There are several statements such as this in T I which specify what the agent’s
intended action should be in various situations.
There are many more AL and ASP statements for T I than mentioned here2.
Figure 3 shows an AL transition diagram that shows the changes in the agent’s mental and physical states1.

2.3.2 Model of History

A model of history is needed for the agent to keep a coherent and rational view of the world, the world’s current
state, and what actions and observations necessitated the current state.

The model of history consists of the following statements: hpd and obs, where hpd corresponds to what actions
have occurred and obs corresponds to what fluents were true. For example, a history could be:

1. obs(in(john, room3), 1).
2. hpd(moves(room4), 2).
3. obs(in(john, room4), 3).

In English, this means:
1. “John was observed to be in room 3 at step 1.”
2. “It happened that John moved to room4 at step 2.”
3. “John was observed to be in room 4 at step 3.”

2.3.3 Exogenous Actions and Updating History

646



Actions occurring in that environment that are not performed by the agent are called exogenous actions. Sometimes,
an exogenous action may have occurred without the agent’s knowledge or observation — an unobserved exogenous
action. Unobserved exogenous actions may cause changes in the state that are unexpected. For example, consider the
following history:

1. obs(on(water1, table1), 1).
2. obs(on(water1, table2), 2).

In English, this means:
1. “Water1 is observed to be on table1 at step 1.”
2. “Water1 is observed to be on table2 at step 2.”

Sometime during step 1, the water must have been moved from table1 to table2. Thus, the agent will update its
history to reflect this:

1. obs(on(water1, table1), 1).
2. hpd(moved(water1, table2), 1).
3. obs(on(water1, table2), 2).

This update allows the agent to maintain a coherent model of the world and allows the agent to make inferences
on unexpected observations.

2.3.4 Description of Environment

In addition to T I and rules of history, the agent must have rules describing the environment it is in. These rules
may be provided in the form of AL statements and corresponding ASP translations. For instance, the rules found in
Example [AL: Chessboard] would be a good description of the environment if that is the type of environment the
agent is in.

3 Expanding Action Language (AL)

In order to expand the functionality of the agent to allow for reactive behavior, we first expand Action Language (AL)
to allow statements for triggered actions that describe how agents should respond to outside changes. Formalisms and
definitions are introduced to define the syntax and semantics of these expansions.

As seen in Definition 1 under Section 2.2 Action Language (AL), there are three types of statements allowed in
AL. We add a fourth statement to allow for triggers:

Trigger statements:

l triggers a.

As an example, a trigger statement could be

building on f ire triggers run outside(bob)

which means building on f ire triggers bob to run outside the building.
To define the semantics of triggers and triggered actions, the following definitions and formalisms are introduced:

Definition 2 [Triggered actions]
Let σ0 be a state. For every trigger statement l triggers a, if l exists in σ0 and a does not lead to an inconsistency in
σ1 then a is a triggered action of σ0.
Definition 3 [Triggered agent actions]
If b is a physical agent action and b is a triggered action, then b is a triggered agent action.

647



The definition of transition1 is modified:

Definition 4 [Transition]
Let a be a non-empty collection of actions and σ0 and σ1 be states of transition diagram T (SD) defined by system
description SD.
A state-action-state triple 〈σ0,a,σ1〉 is a transition of T (SD) if every triggered action of σ0 belongs to a and Π(SD,σ0,a)
has an answer set A such that σ1 = {l : h(l,1) ∈ A}.

With respect to the order in which the previous statements were introduced, the corresponding ASP translations are as
follows:

1. triggered action(A, I)← holds(F, I).
2. occurs(A, I)← triggered action(A, I), not ¬occurs(A, I).
3. triggered agent action(A,I)← agent action(A), triggered action(A, I).

Which are read as:

1. “If fluent F holds at step I then A is a triggered action at step I.”
2. “If A is a triggered action at step I and there is no reason to believe A does not occur at step I, then A occurs
at step I.”
3. “If A is an agent action and A is a triggered action at step I then A is a triggered agent action at step I.”

The function of Line 1 is to establish triggers and mark when there is a triggered action.
Line 2 is needed to ensure that triggered actions occur. The “not ¬occurs(A, I)” in line 2 is needed because there

are situations where a trigger may fail. For instance, a building on fire may trigger the agent to run outside the building,
but if the agent is unconscious during this time then the agent cannot run outside the building. The answer set would
be inconsistent rendering the agent dysfunctional. The “not occurs(A, I)” accounts for situations such as these and
keeps the answer set consistent.

Line 3 marks when a triggered agent action occurs and is needed for expanding T I, which will be explained in the
next section.

4 Expanding TI

Under the AIA architecture, it is impossible for an agent to perform an action that is not intended. For this rea-
son, T I must be modified so that if an agent action is triggered then that triggered action must be the agent’s next
intended action.

In T I, there are rules for intended actions of the agent. The intended action of the agent is based on the recorded
history. For instance, if there are no active goals then the history is of category 1 and the agent’s intended action is to
wait. If there is an active goal and an active plan that is predicted to succeed in achieving the goal then the history is
of category 3 and the agent’s intended action is the next step of the plan.

The following definitions, AL statements, and ASP rules are part of TI and involve categories of history and in-
tended actions1,2.

Definition 5. [Categories of histories]
Let cmn be the current mental state of history Γn.

category 1 - there are no activities or goals that are active in cmn;
category 2 - there is an activity m such that m is top-level and active in cmn but its goal g is no longer active in cmn (i.e
the goal is either achieved or abandoned);
category 3 - there is an activity m such that m and its goal g are both top-level and active and a is the next action of m
in cmn;
category 4 - there is a goal g that is active in cmn but no activity with goal g is active in cmn;

648



We add a new category, category 5, for when there is a triggered agent action:

category 5 - there is a triggered action b in state σn such that σn is a possible current state of history and b is a
physical agent action.

We define the intended action for category 5:

Definition 6. [Intended triggered action of a history of category 5]
Triggered agent action b is an intended action of history Γn if b is a triggered agent action of current state of Γn.

We provide ASP translations for these additions:

category 5(I) :– current step(I), interpretation(N, I), triggered agent action(B, I).
intended action(B, I) :— current step(I), interpretation(N, I), category 5(I), triggered agent action(B, I).

We amend the other categories so that category 5 takes precedence over the other categories:

category 1 - there are no activities or goals that are active in cmn and history is not of category 5;
category 2 - there is an activity m such that m is top-level and active in cmn but its goal g is no longer active in cmn (i.e
the goal is either achieved or abandoned) and history is not of category 5;
category 3 - there is an activity m such that m and its goal g are both top-level and active and a is the next action of m
in cmn and history is not of category 5;
category 4 - there is a goal g that is active in cmn but no activity with goal g is active in cmn and history is not of
category 5;

We modify the ASP translation statements of categories of history:

category 1(I) :— current step(I), interpretation(N, I), not active goal or activity(I), not category 5(I).
category 2(M, I) :— current step(I), interpretation(N, I), ¬h(minor(M), I), h(active(M), I),
goal(M, G), ¬active goal(G), not category 5(I).
category 3(M, I) :— current step(I), interpretation(N, I), ¬ h(minor(M), I), h(in progress(M), I),
not category 5(I).
category 4 history(G, I) :— current step(I), interpretation(N, I), ¬h(minor(G), I), h(active goal(G), I),
¬h(in progress(G), I), not category 5(I).

Finally, by modifying an ASP implementation of the AIA architecture and using a simple context for the agent to
operate in, the agent achieved reactionary behavior as expected.

5 Implementation

Using the ASP modifications introduced, we were able to produce an ASP implementation of an intelligent agent
under the AIA architecture which responded to domain triggers and returned to its intention-driven behavior after-
wards. We placed the agent in several scenarios and evaluated its performance.

5.1 Scenario 5.1

Consider the following context that the agent was placed in: The location of the agent bob is in a building with
four rooms r1, r2, r3, and r4 that are linearly connected. A coworker john is situated in r4 and bob is situated in r1.

The goal of bob is to meet with john. Thus, once the goal is selected, bob will immediately start moving from r1
to r4. However, if there is a fire in the building then this will trigger bob to extinguish the fire. This is the situation the
agent was placed in.

During steps 0 and 1, the goal was selected and a plan was started to achieve the goal. During step 2, bob moved
from r1 to r2. At step 3, there was a fire in the building. Instead of moving from r2 to r3 during this step, bob reacted

649



to the trigger as desired and extinguished the fire. During step 4, bob resumed working to achieve the goal and moved
from r2 to r3.

5.2 Scenario 5.2

In this scenario, we wanted to test the case where the agent repeatedly performs a triggered action in an unintelli-
gent way. The phone was set to ring at every step. So, at every step bob answered his phone. To change this behavior,
we added some statements that prohibited bob from answering the phone more than three steps in a row. This success-
fully caused the unintelligent behavior to stop and for bob to achieve his goal.

5.3 Scenario 5.3

Scenario 3 was the same as scenario 1 except another trigger was added: Bob’s phone ringing triggers bob to an-
swer his phone, and it was set so that bob’s phone rings at step 3. Additionally, a fire was set to occur at step 3 as
well. At step 3, as in scenario 1, bob put his goal temporarily on hold and attempted to extinguish the fire. At the same
time, bob answered his phone. This is not necessarily behavior that we consider intelligent. We want bob to ignore his
phone and extinguish the fire. So, additional statements were added that assigned priorities to the two triggers. The
fire trigger was assigned higher priority. With these additional statements added, bob extinguished the fire at step 3
and ignored his phone.

These different scenarios were tested for a couple reasons. Firstly, we wanted to make sure the basic functionality
of the trigger worked. Secondly, we wanted to examine some problem scenarios where triggers might not work and
what we can do to fix them. Given the scenarios considered and the results obtained, it appears that triggers are flexible
enough to accommodate most issues that may arise from them.

Regarding the programming language of the implementation, an old version of sparc5, which is a declarative
programming language, was used. Included below is a screenshot of the command-line output displaying a subset of
the Answer Set described containing the actions just described.

Figure 2: A subset of the implementation answer-set containing the actions of the agent.

The ASP program written for the implementation and accompanying files can be found on github by searching
AIAImplementation.

6 Discussion and Possible Expansions

The AL expansions and TI modifications introduced successfully expanded the functionality of agents under the AIA
architecture to allow for reactive behavior.

Although our implementations produced reactionary behavior as expected, it is possible that a more complex
situation will yield different results. Multiple types of agent triggers may lead to inconsistent answer sets or the agent
perpetually trying to perform a triggered action but being unable to do so. Thus, depending on the context of the agent,
the number of types of triggered actions the agent is capable of performing may be limited. At worst, the agent may
be limited to a single type of agent action trigger. A proposed quick fix for this would be to limit the number of times
in a row the agent can attempt to execute a specific agent action trigger. This was done for a specific case in scenario
2 with success.

Additionally, if an agent runs into problems trying to execute more than one trigger at once, integer numbers can
be assigned to agent triggers to denote the priority of those triggers. For example, consider triggered agent action(a, I,
p) and triggered agent action(b, I, k), where a and b are different actions, I is the current step, and p and k are integer
values representing priority. If p > k then a should be the intended action of the agent and if k > p then b should be

650



the intended action of the agent. In other words, assigning priority to agent triggers can ensure that specific triggers
are not executed simultaneously. A specific case of this was implemented in scenario 3 and worked for that specific
case.

Regardless, as long as the designer of the specific AIA agent is cognizant and chooses what triggers to give the
agent in a thoughtful manner, these issues should not arise, as demonstrated in our implementations.

Another possible expansion of the AIA architecture would be to allow for the selection of more than one goal at a
time. Consider the following scenario: Agent bob needs to buy eggs and milk at the grocery store. He is currently at
his house. There are of couple ways bob can go about achieving these goals. He could go the grocery store, buy eggs,
and return to his home. Afterwards, he could go to the grocery store, buy milk, and return to his home. However, the
most efficient way to achieve these two goals would be for bob to go to the grocery store, buy both eggs and milk, and
return home.

The current AIA architecture only allows for one goal selection at a time. A valuable expansion would be to allow
for multiple goals at a time and for the agent to behave in the manner discussed.

With regard to the scope of this paper however, the agent produced reactionary behavior as desired, which the re-
sults of the implementations show. The definitions, formalisms, and ASP translations introduced provide a significant
expansion to the original AIA architecture and allow agents under the AIA architecture to be successful in many more
contexts.

7 Related Works

As mentioned before, this work is an extension of Blount’s AIA architecture1, which is itself based on several ear-
lier works. In the earlier AAA architecture4, AL6 was used to describe the environment the agent was in and record the
history of the agent. The AAA architecture had an agent working towards a goal in a changing environment, with some
main differences between AAA and AIA being more dynamic planning and a more organized and cohesive control
loop. Furthermore, because the notion of intention is formally defined in AIA, statements about the overall behavior of
an agent under the AIA architecture can be formally reasoned about or analyzed. These formal statements of intention
were previously well-defined by Baral and Gelfond7.

Since the AIA architecture makes formal statements about intention and behavior, it falls under the category of a
BDI model8,9.

Another work AIA relies on are consistency-restoring rules10, which are used in T I in order to be able to replan
and explain unexpected observations. Since this paper is about extending AIA, all the conceptual frameworks outlined
here that AIA falls under, also encompass the extended AIA architecture in this paper.

8 Acknowledgements

The authors wish to express their appreciation for Michael Gelfond in discussing and guiding the direction of the
project, Yuanlin Zhang for his thorough and careful work in instructing and teaching the research process, and Evgenii
Balai for his technical expertise and help with the implementation.

9 References

1. Blount, J., “An Architecture For Intentional Agents,” Ph.D. Dissertation, Texas Tech University (December
2013).

2. Blount J., M. Gelfond, and M. Balduccini, “Towards a Theory of Intentional Agents,” AAAI Stanford Spring
Symposium on Knowledge Representation and Reasoning in Robotics (2014).

3. Gelfond, M. and V. Lifschitz, “Action Languages in Linkping Electronic Articles in Computer and Information
Science,” Vol. 3 (1998), URL http://www.ep.liu.se/ea/cis/1998/016/.

4. Marcello, B. and M. Gelfond, “The AAA Architecture: An Overview,” In AAAI Spring Symposium 2008 on
Architectures for Intelligent Theory-Based Agents (AITA08) (Mar 2008).

5. Balai, E., M. Gelfond, and Y. Zhang, “Towards Answer Set Programming with Sorts,” In Proceedings of
LPNMR-2013 (2013).

651



6. Baral, C., and M. Gelfond, “Reasoning Agents In Dynamic Domains,” In Workshop on Logic-Based Artificial
Intelligence (2000).

7. Baral, C., and M. Gelfond, “Reasoning about Intended Actions,” In Proceedings of AAAI05, 689694 (2005).
8. Rao, A. S., and M. P. Georgeff, “Modeling rational agents within a BDI-architecture,” In Proceedings of the 2nd

International Conference on Principles of Knowledge Representation and Reasoning, 473484 (1991).
9. Wooldridge, M., “Reasoning about Rational Agents,” The MIT Press (2000).
10. Balduccini, M., and M. Gelfond, “Logic Programs with Consistency-Restoring Rules,” In Doherty, P.; Mc-

Carthy, J.; and Williams, M.-A., eds., International Symposium on Logical Formalization of Commonsense Reasoning,
AAAI Spring Symposium Series, 918 (2003).

652


