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Abstract 
 

The power consumed by recharging Electric Vehicles (EVs) can significantly impact the electric grid. EV charging 
can potentially cause a sharp increase in electricity demand at the end of every workday as EV owners begin 
charging their cars upon returning home. Having an accurate short-term forecast of EV power consumption can 
mitigate some of these impacts. One way of improving forecast accuracy is to develop a Markov Chain model of the 
underlying process. This research develops a Markov Chain model of hourly aggregate EV power consumption 
based on EV charging data from the Puget Sound region in Washington State during the year 2012.  A Markov 
Chain model is a discrete time stochastic process where the future evolution of the process is conditionally 
independent of the past given the present.  Aggregate EV charging power consumption exhibits strong diurnal 
trends—low in morning and increasing over the evening as drivers return home to recharge their vehicles. To 
represent these characteristics, the Markov Chain model was partitioned into three segments based upon the time of 
day. Within each segment, there are four distinct states, each corresponding to a range of power consumption. 
Transition probabilities between the states within each segment were computed. This model was used to simulate 
aggregate EV power consumption over a 24-hour period.  
 
Keywords: Electric Vehicles, Load Profiles, Load Forecasting and Markov Simulation 
 
 
1. Introduction 

 
Today’s transportation system predominantly relies on fossil fuels such as petroleum. Internal combustion engines 
(ICEs) have been a dominant source of vehicle propulsion for the last 100 years. However, ICEs create harmful 
emissions and noise pollution. When assessing alternatives to ICEs, it is important to consider Electric Vehicles 
(EVs). Credible research has shown that the majority of the vehicle’s carbon production is during operation rather 
than production. EVs consume only a third as much energy in operation as ICEs, no matter what fuel is used to 
generate the electricity they use1. Sources of electricity range from wind, solar, hydro, biofuel, natural gas, nuclear, 
and fossil fuels, most of which are domestically available. Thus, EVs have the potential to support the United 
States’s economy and reduce dependence on imported oil. The electric power industry expects a 400% growth in 
annual sales of plug-in electric vehicles by 2023, which substantially increases the load demand and electricity 
usage2. Understanding EV charging patterns can help utilities plan and operate the power grid in order to account for 
large vehicle charging loads.  
   This paper develops a Markov chain model of EV power consumption based on the 2012 Seattle EV charging data 
set provided by ECOtality3. Markov Chain models are beneficial when modeling a probabilistic patterned time-
series. Markov Chains are useful in modeling a process that changes from one state to another over time. In this 
research, the states are the different ranges of EV power consumption. This paper is organized as follows. In Section 
II, the data set, load profile and an introduction to Markov Chains are provided. In Section III, the methodology for 
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developing the model segments and states are explained. The Markov simulation methodology is explained in 
Section IV. Section V explains the results and analysis of the simulation and conclusions follow in Section VI. 
 
 
2. Background 
 
2.1. load profile  
 
The data used in this research comes from ECOtality’s “EV Project.” The EV Project collects EV charging station 
data for registered Nissan LEAF and Chevrolet Volt vehicles. The EV Project collects information on the vehicle 
model, energy used and time duration of charger use. This research focuses on the Washington State, specifically in 
Seattle, for the year 2012. There are about 1,200 EVs that were analyzed in the data set3. 
   The data set containd aggregated EV charging station demand values sampled at 15-minute intervals during 2012 
(35,136 total samples). However, this research focuses on the converted the 15-minutely samples to hourly-averages 
of these samples in order to easily examine a 24-hour load profile4. 
   Figure 1 shows the hourly average consumption load profile for Seattle in the year 2012. A trend is apparent. 
There is a moderate increase in power consumption from 4:00 to 12:00, a significant increase from 12:00 to 20:00, 
and then a general decrease from 20:00 to 4:00.  
 

 
 

Figure 1. Seattle EV Charging Load Profile 

   The nighttime peak is expected because EV drivers usually come home in the early evening to charge their EVs. 
The power consumption continues to increase throughout the early evening until approximately 23:00. By this time, 
drivers have returned home and many EVs have become fully charged. The load steadily decreases until 4:00 then 
increases as commuters drive to work, some of them charging their EVs at their workplace.  
 
2.2. Markov chain  
 
Markov Chains are used to probabilistically model a pattern that progresses over time. Since the load profile in 
Figure 1 follows a pattern, a Markov chain is an appropriate modeling approach. A Markov chain is a mathematical 
model of a sequence of random variables that evolves over time in a probabilistic manner. The behavior at the next 
point in time depends only on the current state and does not depend on what happened before. In other words, the 
next state of the system depends only on the present state and not on preceding states. The Markov chain equation 
explains this property: 
 
                   (1) 

Time (Hour)
0:00 4:00 8:00 12:00 16:00 20:00

Po
w

er
 (k

W
)

0

100

200

300

400

500

600

700

800

900

1000
Seattle Load Profile (One Day)

Pr(Xn+1 = x | X1 = x1,X2 = x2,...,Xn = xn ) = Pr(Xn+1 = x | Xn = xn )



92 
 

   where,  is the next hour, is the possible next state, is the current hour and is the current state5. 
Informally this can be interpreted as the probability of transitioning into a certain state in the next hour, given the 
present state in the current hour. Given the present, the future is conditionally independent of the past.  
   Figure 2 shows an example of the Markov chain model. In hour , the state is . The probability of 
transitioning into each state in hour is displayed. Using the Markov definition, we can demonstrate the 
probability transition of state  to state . Given equation (1), the probability of transitioning into state  in the 

next hour (n = 2) , given the process is in state  during the first hour is 30%. Therefore,

. In this research, we use the Markov chain to model the hourly transitions from 
different states of EV power consumption. 
 

 
 

Figure 2. Markov Chain Model Example 

 
3. Methodology 
 
This research investigated EV power consumption by modeling the 2012 Seattle data set using a Markov chain. To 
do this, the average load profile of the daily EV consumption was partitioned into three time segments, referred to as 
Alpha, Beta, and Gamma. Each segment corresponds to a trend in the load profile. A separate Markov chain model 
was developed for each segment.  
   Markov Chains use discrete states to model the underlying process, but the EV data are continuous values. 
Therefore, the EV data in each segment were quantized into four states such that 25 percent of the data mapped into 
each state. A 24-hour period was then simulated and compared to the actual data. 
 
3.1. Model Segments 
 
Let P be a matrix whose elements correspond to a specific hourly aggregate EV load in the data set. The data are 
arranged such that each row in P corresponds to a specific day and each column is a specific hour of the day. 
Therefore P has 366 rows (2012 is a leap year) and 24 columns. Let  be the power consumption of hour h of day 

d. Let , ,  be sub-matrices of P, where , , 

 represent the Alpha, Beta, and Gamma model segments, respectively.  
 
3.2. States 
 
Discrete states of EV charging power need to be defined so that a Markov model can be used. In this research, four 
states are defined for each segment, as described in Table 1. There are several approaches to defining the states. In 
this research, the distribution of continuous values in each segment (Alpha, Beta and Gamma) was used to determine 

Xn+1 x Xn xn

n = 1 x3
n = 2

x3 x1 x1
x3 (n = 1)

Pr(X2 = x1 | X1 = x3) = 30%

Pd,h
Pα Pβ Pγ Pα = {Pd,h : 4 ≤ h < 11} Pβ = {Pd,h :12 ≤ h < 19}

Pγ = {Pd,h : 20 ≤ h < 3}
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the range of continuous value that map to a specific discrete state. The boundaries of the continuous values 
associated with each state in each segment were determined as follows. 
 
Table 1. Markov Chain Time Segments 
 

Segment Hours States 
Alpha (α) 4:00-11:00 α1, α2, α3, α4 
Beta (β) 12:00-19:00 β1, β2, β3, β4 

Gamma (γ) 20:00-3:00 γ1, γ2, γ3, γ4 
 
   Consider segment Alpha. Since there are four states needed for each segment, the quartiles of Pα  are used to 
define the boundaries of the continuous values that map to each state. This is visualized in Figure 3. The quartiles 
are computed from the empirical inverse cumulative distribution function Fα

-1(x)   of Pα . 

   The EV charging values, in kilowatts, associated with the state α1 range from zero to Fα

-1 (0.25), that is [0, 39.72). 
The ranges for α1 are Fα

-1 (0.25) to Fα

-1 (0.50) or [0.3972, 58.49) and so on. The process is repeated to determine the 
ranges for the four states in Beta and Gamma, as shown in Figure 4 and Figure 5. Table 2 summarizes the state 
boundaries for each segment.  
 

  
Figure 3. Empirical cumulative distribution function of Alpha Segment 

  
Figure 4. Empirical cumulative distribution function of Beta Segment 
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Figure 5. Empirical cumulative distribution function of Gamma Segment 

Table 1. state boundaries 

Alpha Segment: 4:00-11:00 
  α1  α2 α3 α4 

α (kW) [0, 39.72) [39.72, 58.49) [58.49, 80.72) [80.72, ∞) 

     Beta Segment: 12:00-19:00 
  β1 β2  β3 β4 

β (kW) [0, 102.77) [102.77, 156.87) [156.87, 237.32) [237.32, ∞) 

     Gamma Segment: 20:00-3:00 
  γ1 γ2 γ3 γ4 

γ (kW) [0, 199.23) [199.23, 304.29) [304.29, 397.09) [397.09, ∞) 
 
   Using the state boundaries, the transition matrices for Alpha and Beta, Gamma were created. Transition matrices 
compactly describe the probability of transitioning between states within the same segment. Let Tk generically 

represent the transition matrix for matrix for segment k. Let the elements of be  
 
 

       (2) 

 
 
where . As an example,  of  is the probability of transitioning from state 3 to state 

4 in the Beta segment (12:00-19:00).  Transition matrices Tαβ , Tβγ , Tγα  are also needed to handle the transition 

between the last hour of one segment to the beginning of the next segment. For example, Tαβ  is used to determine 
the probability of transitioning from a given state in Alpha at hour 11:00 to a state in Beta at hour 12:00. 
   A transition matrix is populated by analyzing the data in the corresponding sub-matrix. For example, to determine 
element t1,3  of matrix Tα  (time period 4:00-11:00), Pα  is analyzed. First, the number of occurrences N of elements 
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in the range of 0 to 39.72 kW (state α1 ) is computed. Then, the number of occurrences M of a value in the range of 
0 to 39.72 kW (state α1 ) followed by a value in the range of [58.49, 80.72) (state α3 ) is computed. The value M 

divided by N is t1,3 . This is the probability of transitioning from state α1  to state α3  in the time period 4:00 to 
11:00. 
   Figure 6 shows an alternative way to visualize the first row of transition matrix Tα . The probability of 

transitioning from state in one hour to state in the next hour is . The 

probability of transitioning to state   in the next hour from state  in the current hour is 

. The probability of transitioning to state  from state  is 

 (there is never an α1 to α4  transition in the data set). The probability of staying in 

state in the next hour, given being in state  in the current hour is .  
 

 
 

Figure 6. State α1 Markov Model 

   The same method was used to calculate the Markov transition probabilities for the remaining matrices. Table 3 
shows the probability transitions for Tα ,Tαβ ,Tβ ,Tβγ ,Tγ and . Note that segment-to-segment transition matrices 

such as Tαβ ,Tβγ  and  in Table 3 show a majority of 0% probabilities. For example, in the Tαβ  matrix, the 

probability transition from state α1 to states β2, β3, or β4 is 0%. This is because state α1 corresponds to very low 
power values. From Table 2, a transition from α1 to β1, requires a minimum change in power value from  39.72 kW 
to 102.77 kW. Such a rapid change never occurred from 11:00 to 12:00 in the data set. Also note that the Gamma 
segment never ended in γ4, so the transition probability is not calculated. 
 
Table 3. Transition Matrix Values  
 

Alpha α1 α2 α3 α4  Alpha-Beta β1 β2 β3 β4 
α1 65.06 28.46 6.48 0.00  α1 100.00 0.00 0.00 0.00 
α2 21.51 36.84 34.36 7.29  α2 100.00 0.00 0.00 0.00 
α3 8.59 16.41 35.91 39.09  α3 93.33 0.00 0.00 6.67 
α4 0.18 1.90 5.45 92.47  α4 49.75 31.16 6.03 13.07 
           Beta β1 β2 β3 β4  Beta-Gamma γ1 γ2 γ3 γ4 
β1 88.04 11.65 0.31 0.00  β1 100.00 0.00 0.00 0.00 
β2 28.34 42.63 28.88 0.15  β2 92.86 7.14 0.00 0.00 
β3 3.57 23.16 47.15 26.12  β3 55.56 44.44 0.00 0.00 
β4 0.00 1.39 11.57 87.04  β4 0.00 15.02 43.69 41.30 
           Gamma γ1 γ2 γ3 γ4  Gamma-Alpha α1 α2 α3 α4 
γ1 93.27 6.61 0.13 0.00  γ1 10.68 19.29 38.28 31.75 
γ2 26.96 51.13 20.02 1.89  γ2 0.00 0.00 0.00 100.00 
γ3 1.73 25.51 54.98 17.78  γ3 0.00 0.00 0.00 100.00 
γ4 0.00 3.14 19.17 77.69  γ4 -- -- -- -- 

 
 

α1 α2 t1,2 = Pr X2 ={ 2 X1 = 1} = 28.46%
α3 α1

t1,3 = Pr X2 ={ 3 X1 = 1} = 6.48% α4 α1

t1,4 = Pr X2 ={ 4 X1 = 1} = 0%
α1 α1 t1,1 = Pr X2 ={ 1 X1 = 1} = 65.06%

Tγα
Tγα
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4. Simulation 
 
The Markov simulation is a two-part process. First the simulation determines the states for each hour in a 24-hour 
time series and store into an array, s[h]. The second part of the simulation involves probabilistically evaluating the 
power values for each state in s[h], which are stored into the array . 
   Figure 7 shows the flow chart that explains the first part of the procedure. Let h represent the hour, s[h]  represent 
the state at hour h, r represent a random number drawn from a uniform distribution, U, and represents a transition 

matrix, either or .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
   The simulation begins at h=1. The first state is arbitrary and is set to 1 in this example, but any other state can be 
selected or randomly assigned. The simulation increments to the next hour. Next, the appropriate transition matrix, 

, is selected based upon hour h. If 4 < h < 11 then is selected for  . If h = 11 then is selected. If 11 < h < 

12, then is selected. is selected if h=12, and  is selected if 12 < h < 3 and  is selected if h = 3.  
 
A random number within the range of is picked from a uniform distribution. Using the selected transition 
matrix,  if r < t(s[h−1],1) , then the determined state for that hour is state 1. If t(s[h−1],1) ≤ r < t(s[h−1],2) , then the 

determined state for that hour is state 2. If t(s[h−1],1) ≤ r < t(s[h−1],3) , then hour h is in state 3, and if t(s[h−1],3) ≥ r , then 
hour h is in state 4. The determined state for hour h is stored as s[h]. The simulation evaluates if hour h = 24. If not 
true, the simulation repeats itself by incrementing by one until h =24. When the simulation is complete, s[h] is an 
array of 24 values each in which 1, 2, 3, or 4 corresponds to a state.  
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Figure 7: Flow Chart Simulation of s[h] 
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   The next step in the simulation is to find the continuous power values  corresponding to each discrete state in 
s[h]. This is done probabilistically, again using the inverse cumulative distribution function for each state and 
segment. Figure 8 shows the flow chart that determines the power value associated with the simulated hour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the simulated hour array, s[h], the process defines the power value with its associated state and hour. To do 
so, the hour is incremented to 1, and then a random number r is drawn from a Uniform distribution on the interval 
[x, y). The value of x and y are determined from the state s[h] as follows. If s[h] = 1, then the interval is [0, 0.25); for 
s[h]=2, then interval is [0.25, 0.50); if s[h]=3, then the interval is [0.50, 0.75); and if s[h]=4 then the interval is [0, 
0.25). The continuous power value  is set to Fk

-1(r) where Fk
-1 is the inverse empirical cumulative distribution 

function corresponding to the data in Pk, and k is either α, β, or γ, depending on the hour simulated. 
 
The simulation is then asked to evaluate if hour h = 24. If not true, then the simulation repeats itself by incrementing 
by one, h:=h+1, until h = 24 is true. When the simulation is complete,  is an array of 24 simulated values, with 
the power values corresponding to each hour. 
5. Results  
 
Figure 9 and 10 shows the Markov simulation and a typical day of EV power consumption from the data set, 
respectively. Comparing both figures, the general shapes of the curves are similar. The general trends increase and 
decrease in the same areas. It is not expected that the model exactly matches the actual data, due to the probabilistic 
nature of the model as well as the simplifications made in the modeling process. 
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Figure 7: Markov Simulation (One Day) 

 
 

Figure 8: EV power consumption of a typical day 

Figure 11 shows the results of !P[h]  from the Markov simulation average of 100 days, plotted on a Time versus 
Power (kW) axis. Comparing this figure with the average Seattle load profile average shown in Figure 1, the general 
trends are similar. Both trends are increasing and decreasing in the same general, which confirms the Markov chain 
simulation.  
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Figure 9: Markov Simulation Load Profile Average (100 Days) 

6. Conclusions 
 
This paper utilizes the Markov chain to model electric vehicle charging profiles by creating time dependent models. 
The 2012 Seattle EV charging data set was separated into morning, afternoon, and nighttime to model and simulate 
charging patterns. Analyzing the general shapes of the graphs from the original data and the Markov simulated data, 
we can conclude that the Markov chain model and simulation was successful.  
   In conclusion, this research developed a Markov Chain model with three segments and four states for electric 
vehicle charging consumption and developed a simulation algorithm. The model can be improved by increasing the 
number of segments—perhaps as high as one per hour—and increasing the number of states, for example, from four 
to eight. 
. Weekdays and weekdays can also be separated and evaluated to improve the Markov chain model.  
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