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Abstract

A recurrence relation is an equation that recursively defines a sequence of numbers,
given one or more initial terms. An m × n recurrence matrix is a matrix whose entries
read row-by-row are the terms of a sequence defined by a recurrence relation. The rank
of a matrix is the maximum number of linearly independent columns or rows of the
matrix. In 2014, Christopher Lee and Valerie Peterson proved that the maximum rank
of a recurrence matrix is the order of the corresponding recurrence relation but that for
order-two recurrence relations the rank drops if the ratio of the two initial terms of the
sequence is an eigenvalue of the relation. Using the method of fundamental solutions,
we generalize their result for order-two relations by showing that rank also drops if the
nth powers of the eigenvalues coincide. We then discuss more recent results by Sebastian
Bozlee that determine the rank of recurrence matrices based on whether the relation can
be written to have lower order and whether the nth powers of the eigenvalues coincide in
hopes of extending our results to recurrence relations of orders higher than two.
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1. Introduction

A recurrence relation is an equation that defines a sequence of numbers, given one
or more initial terms. Real-world applications of recurrence relations include computer
algorithms. The Fibonacci search technique, for example, is a computer algorithm that
uses a divide-and-conquer method to locate the positions of certain Fibonacci numbers.
These algorithms are also used in biology to predict, for example, the arrangement of
branches on a tree, the flowering of an artichoke, and the uncurling of a fern [6]. Most
importantly for our purposes, the formula for finding the sequential terms of the Fibonacci
sequence is an example of a recurrence relation.

The terms defined by a recurrence relation can be put into a matrix, row-by-row,
to yield a recurrence matrix. For example, a 3 × 3 recurrence matrix whose entries are
the first nine numbers of the Fibonacci sequence {Fn} defined by the recurrence relation
Fn = Fn−1 + Fn−2 is



F =

 1 1 2
3 5 8
13 21 34

,

and like any matrix, it is possible to find its rank. Rank, which is defined as the maximum
number of linearly independent rows or columns of the matrix (see, for instance, [4] or
any other standard linear algebra textbook), is of great importance in solving systems
of linear equations. In general, the number of equations in a system corresponds to
the number of rows in that system’s corresponding matrix. Three basic row operations
(scaling all entries of a row by a nonzero constant, interchanging two rows, and replacing
one row with the sum of itself and a multiple of another row) can be used to reduce all
rows corresponding to redundant information in the system to zeros, and the number of
remaining rows corresponding to essential information in the system is the rank of the
matrix.

We will use these three row operations to find the rank of recurrence matrices whose
entries come from sequences defined by homogeneous recurrence relations. Furthermore,
we will compute formulas that will help us understand when a recurrence matrix has full
rank, and when its rank drops. This has been shown in the order-two case in [5], but
we prove their findings using the method of fundamental solutions [2]. With added care,
we will also use the transpose of the recurrence matrices to help us understand when
their ranks drop. The transpose of an m × n matrix R is defined as the n ×m matrix
denoted by RT , whose columns are formed by using the corresponding rows of R (see,
for instance, [4] or any standard linear algebra book). We are able to use RT because
rank(R) = rank(RT ). Using RT allows us to find formulas for row operations instead of
finding linearly independent columns as in [5]. Through this study we hope to extend
this method to matrices whose entries come from order-three homogeneous recurrence
relations.

2. Arithmetic and Geometric Sequences

The simplest recurrence relation is the arithmetic sequence defined by the equation ak =
a1 + (k − 1)x where a1 is an initial seed, and x is a common difference added to each
term to get the next term. By re-indexing if necessary, we assume that a1 6= 0, and we
assume that x 6= 0 so that the sequence is not constant. Now, let an arithmetic matrix
be a matrix whose entries come from an arithmetic sequence defined by an arithmetic
recurrence relation.

The following proposition was made in [5] but was also observed in [3] and was the
starting point for [7]. We will prove this proposition using our method rather than the
method seen in [5].

Proposition 1. Every m× n arithmetic matrix A with m,n ≥ 2 has rank 2.

Proof. As explained previously, we consider AT whose entries read column-by-column are
the terms of an arithmetic sequence {ak} defined by

ak = a1 + (k − 1)x

with a1, x 6= 0 as assumed above so that the (i, j)-entry of AT is

a(j−1)n+i = a1 + ((j − 1)n+ i− 1)x.
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Entries in the first row of AT correspond to i = 1:

a(j−1)n+1 = a1 + (j − 1)nx

Likewise, entries in the second row of AT correspond to i = 2:

a(j−1)n+2 = a1 + ((j − 1)n+ 1)x

For i = 3, . . . , n, replacing Row i of AT with

(Row i) + (i− 2)(Row 1)− (i− 1)(Row 2)

reduces entries in Row i to

a1 + ((j − 1)n+ i− 1)x+ (i− 2)(a1 + (j − 1)nx)− (i− 1)(a1 + ((j − 1)n+ 1))x) = 0.

Replacing Row 2 with

(Row 2)− a1 + x

a1
(Row 1)

reduces entries in Row 2 to

a1 + ((j − 1)n+ 1)x− a1 + x

a1
(a1 + (j − 1)nx) = −(j − 1)nx2

a1

so the (2, 1)-entry is 0 and all other entries in Row 2 are nonzero since x 6= 0. Thus,
rank(A) = rank(AT ) = 2.

Another example of a recurrence relation is the geometric sequence defined by the
equation ak = apk−1. Let a geometric matrix be a matrix whose entries come from a
geometric sequence defined by a geometric recurrence relation. The following is also
proven in [5], but we again prove it using our alternate method.

Proposition 2. Every m× n geometric matrix G has rank 1.

Proof. As before, we consider GT whose entries read column-by-column are the terms of
a geometric sequence {ak} defined by

ak = apk−1

with the (i, j)-entry
a(j−1)n+i = ap(j−1)n+i−1.

Entries in the first row of G correspond to i = 1:

a(j−1)n+1 = ap(j−1)n

For i = 2, . . . , n, replacing Row i of G with

(Row i)− pi−1(Row 1)

reduces entries in Row i to

ap(j−1)n+i−1 − pi−1ap(j−1)n = 0.

Hence, rank(G) = rank(GT ) = 1.
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3. Homogeneous Recurrence Relations

We now consider recurrence matrices whose entries are given by homogeneous recur-
rence relations. Let an order-r homogeneous recurrence relation be a relation whose kth

term is expressed as a linear combination of the preceding r terms. The following theorem
was proven in [5], but yet again we prove it using our alternate method.

Theorem 1. If R is an m × n matrix whose entries read row-by-row are given by an
order-r homogeneous recurrence relation ak = γ1ak−1 + · · ·+ γrak−r, then rank(R) ≤ r.

Proof. As before, we consider RT whose entries read column-by-column come from the
order-r homogeneous recurrence relation

ak = γ1ak−1 + · · ·+ γrak−r

so the (i, j)-entry of RT is

a(j−1)n+i = γ1a(j−1)n+i−1 + · · ·+ γra(j−1)n+i−r.

For i = n, ..., (r + 1), replacing Row i of R with

(Row i)− γ1(Row (i− 1))− · · · − γr(Row (i− r))

reduces entries in Row i to

a(j−1)n+i − γ1a(j−1)n+i−1 − · · · − γra(j−1)n+i−r = 0.

Hence, rank(R) = rank(RT ) ≤ r.

The following two examples show the two instances in which the rank of a matrix can
drop. These instances will be further investigated in this paper.
Example 3.1. Consider the order-two recurrence relation ak = 3ak−1−2ak−2 with initial
seed a0 = 1 and a1 = 2. The corresponding recurrence matrix is

R =

 1 2 4
8 16 32
64 128 256

.

Given that each row is a multiple of the first row, we can reduce rows beyond the first
to zero; therefore, this matrix has rank 1 despite it coming from a order-two recurrence
relation. This can be explained by the fact that it can also be written as ak = 2k satisfying
the recurrence relation ak = 2ak−1, which is an order-one recurrence relation, so the rank
is bounded above by 1 rather than 2. This happens because the recurrence relation can
be written to have a lower order.
Example 3.2. Let’s consider the recurrence relation ak = ak−2 with initial seeds a0 = 4
and a1 = 0. This means that ak = 4 for even k, and ak = 0 for odd k. If we construct a
3× 3 matrix from this sequence,

R =

4 0 4
0 4 0
4 0 4
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we have a matrix with rank 2; however, if we construct a 4× 4 matrix from the sequence,

R =


4 0 4 0
4 0 4 0
4 0 4 0
4 0 4 0


we have a matrix that has rank 1 because all rows are a multiple of the first row. This
happens due to the width of the matrix. This situation will be further analyzed in the
theorems to come.

4. Eigenvalues and Fundamental Solutions

Eigenvalues of an order-two homogeneous recurrence relation are obtained by solving
the quadratic equation corresponding to the recurrence relation. We now show how the
eigenvalues and fundamental solutions for an order-two homogeneous recurrence relation
are found.

Suppose we are given an order-two homogeneous recurrence relation

ak = γ1ak−1 + γ2ak−2.

If we let ak = x2, ak−1 = x, and ak−2 = 1, we obtain the equation

x2 − γ1x− γ2 = 0.

Solving this quadratic equation gives the eigenvalues of the equation. If the eigenvalues
λ1 and λ2 are distinct, then the fundamental solutions are λk−11 and λk−12 and the general
solution of the recurrence relation is

ak = aλk−11 + bλk−12 .

If the eigenvalue λ is repeated, then the fundamental solutions are λk−1 and kλk−1 and
the general solution of the recurrence relation is

ak = aλk−1 + bkλk−1.

We use this method of finding the general solutions of a recurrence relation to prove the
following generalization of a theorem from [5].

Theorem 2. An m × n recurrence matrix R whose entries come from an order-two
homogeneous recurrence relation has rank 1 if and only if a2

a1
is an eigenvalue of the

relation with initial terms a1 and a2 or the relation has distinct eigenvalues whose nth

powers coincide.

Proof. As before, we consider RT whose entries read column-by-column come from an
order-two homogeneous recurrence relation

ak = γ1ak−1 + γ2ak−2
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so the (i, j)-entry of RT is

a(j−1)n+i = γ1a(j−1)n+i−1 + γ2a(j−1)n+i−2.

As before, for i = n, ..., 3, replacing Row i of RT with

(Row i)− γ1(Row (i− 1))− γ2(Row (i− 2))

reduces entries in Row i to

a(j−1)n+i − γ1a(j−1)n+i−1 − γ2a(j−1)n+i−2 = 0.

Thus, rank(RT ) ≤ 2, and we determine when rank(RT ) = 1 using the method of
fundamental solutions for the following two cases.
4.1 Case 1: One repeated eigenvalue

If x2−γ1x−γ2 = 0 has a single repeated eigenvalue λ, then its fundamental solutions
are λk−1 and kλk−1 and its general solution is ak = aλk−1 + bkλk−1. To find a and b, we
solve the system of equations a1 = a + b, a2 = aλ + 2bλ by row reducing the augmented
matrix [

1 1 a1
λ 2λ a2

]
which yields a = 2λa1−a2

λ
and b = a2−λa1

λ
, so the general solution is

ak = λk−1(2− k)a1 + λk−2(k − 1)a2

and the (i, j)-entry of RT (read column-by-column) is

a(j−1)n+i = λ(j−1)n+i−1(2− (j − 1)n− i)a1 + λ(j−1)n+i−2((j − 1)n+ i− 1)a2.

Entries in the first row of RT correspond to i = 1:

a(j−1)n+1 = λ(j−1)n(1− (j − 1)n)a1 + λ(j−1)n−1(j − 1)na2

Entries in the second row of RT correspond to i = 2:

a(j−1)n+2 = λ(j−1)n+1(1− j)na1 + λ(j−1)n((j − 1)n+ 1)a2

Replacing Row 2 with (Row 2)− a2
a1

(Row 1) reduces entries in Row 2 to

−λ
(j−1)n−1(j − 1)n

a1
(λa1 − a2)2

which is 0, assuming that λ 6= 0, if and only if λ = a2
a1

. Hence, rank(R) = rank(RT ) = 1
if and only if λ = a2

a1
.

4.2 Case 2: Two distinct eigenvalues
If x2 − γ1x − γ2 = 0 has two distinct eigenvalues, λ1 and λ2, then its fundamental

solutions are λk−11 and λk−12 , and its general solution is ak = aλk−11 + bλk−12 . To find a
and b, we solve the system of equations a1 = a + b, a2 = aλ1 + bλ2 by row reducing the
augmented matrix
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[
1 1 a1
λ1 λ2 a2

]
.

Row reduction yields a = λ2a1−a2
λ2−λ1 and b = a2−λ1a1

λ2−λ1 , so the general solution is

ak =
λ2λ

k−1
1 − λ1λk−12

λ2 − λ1
a1 +

λk−12 − λk−11

λ2 − λ1
a2

and the (i, j)-entry of RT (read column-by-column) is

a(j−1)n+i =
λ2λ

(j−1)n+i−1
1 − λ1λ(j−1)n+i−12

λ2 − λ1
a1 +

λ
(j−1)n+i−1
2 − λ(j−1)n+i−11

λ2 − λ1
a2.

Entries in the first row of RT correspond to i = 1:

a(j−1)n+1 =
λ2λ

(j−1)n
1 − λ1λ(j−1)n2

λ2 − λ1
a1 +

λ
(j−1)n
2 − λ(j−1)n1

λ2 − λ1
a2

Entries in the second row of RT correspond to i = 2:

a(j−1)n+2 =
λ2λ

(j−1)n+1
1 − λ1λ(j−1)n+1

2

λ2 − λ1
a1 +

λ
(j−1)n+1
2 − λ(j−1)n+1

1

λ2 − λ1
a2

Replacing Row 2 with (Row 2)− a2
a1

(Row 1) reduces entries in Row 2 to

λ
(j−1)n
1 − λ(j−1)n2

(λ2 − λ1)a1
(a2 − λ1a1)(a2 − λ2a1)

which is 0 if and only if λ1 = a2
a1

, λ2 = a2
a1

, or λn1 = λn2 , so rank(R) = rank(RT ) = 1 iff
λ1 = a2

a1
, λ2 = a2

a1
, or λn1 = λn2 .

4.3 Characterizing Rank Drops

Rank drops that take place when the nth powers of the eigenvalues coincide were not
observed in [5] but were later characterized along with rank drops that take place when a
recurrence relation can be written to have a lower order (i.e., a minimal order recurrence)
in [1]. In particular, the following theorem from [1] finds the minimal order recurrence
relation satisfied by a recurrence relation.

Theorem 3. Let {ak} be a sequence given by an order-r recurrence relation with q distinct
eigenvalues λ1, λ2, . . . , λq with respective multiplicities k1, k2, . . . , kq. Let Kl,i be the unique
constants so that

ak =

q∑
l=1

kl∑
i=1

Kl,i(k
i−1λkl )

Let Ml be the maximal value of i so that Kl,i is nonzero, or zero if Kl,i is zero for
all i. Then the minimal order recurrence satisfied by {ak} is the recurrence with the
characteristic polynomial f(λ) =

∏q
l=1(λ− λl)Ml.
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This next theorem from [1] characterizes rank drops that take place when the nth

powers of the eigenvalues coincide; such rank drops are called “width drops.”

Theorem 4. Let {ak} be an order-r recurrence sequence with q distinct eigenvalues
λ1, λ2, . . . , λq with multiplicities k1, k2, . . . , kq respectively. Let Sn be the set of distinct
values taken by λn1 , . . . , λ

n
q . Then if m,n ≥ r,

rank Mm,n(ak) =
∑
s∈Sn

max
l
{kl : λnl = s}

where Mm,n(ak) is the m× n recurrence matrix M whose entries are the terms from the
recurrence sequence {ak}.

Finally, this last theorem from [1] finds all possible rank drops for order-two homoge-
neous recurrence relations.

Theorem 5. If R is an m×n matrix with m,n ≥ 2 whose entries (read row-by-row) are
given by an order-two homogeneous recurrence relation ak = γ1ak−1 + γ2ak−2, then

rank(R) =



0 if a0 = a1 = 0

1 if a21 − γ1a1a0 − γ2a20 = 0

1 if γ21 + 4γ2 6= 0 and

(
γ1+
√
γ21+4γ2

γ1−
√
γ21+4γ2

)n
= 1

2 else

These are the same results we found in Theorem 2. We now use the approach of [1]
for the order-three homogeneous recurrence relation case. Note that there are several
differences from our original approach. In [1], the sequence {ak} begins at k = 0 whereas
we began {ak} at k = 1. Moreover, instead of using row operations to determine when
rank drops, [1] uses Cramer’s Rule. This particular method calls for an n× n invertible

matrix A such that the unique solution x of Ax = b has entries of the form xi = detAi(b)
detA

where i = 1, . . . , n. In particular, the adjoint of the matrix A, denoted adj(A), divided
by the determinant of A, denoted det(A), help form the solution x to Ax = b.

5. Order-three homogeneous recurrence relations

Suppose we are given an order-three homogeneous recurrence relation

ak = γ1ak−1 + γ2ak−2 + γ3ak−3.

If we let ak = x3, ak−1 = x2, ak−2 = x, and ak−3 = 1, we obtain the equation

x3 − γ1x2 − γ2x− γ3 = 0.

Solving this cubic equation gives the eigenvalues of the equation. If the eigenvalues λ1,
λ2, and λ3 are distinct, then the fundamental solutions are λk−11 , λk−12 , and λk−13 , and the
general solution of the recurrence relation is

ak = aλk−11 + bλk−12 + cλk−13 .
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If the eigenvalue λ is repeated with multiplicity 3, then the fundamental solutions are
λk−1, kλk−1, and k2λk−1, and the general solution of the recurrence relation is

ak = aλk−1 + bkλk−1 + ck2λk−1.

If one eigenvalue λ1 is repeated with multiplicity 2, and the other, λ2, is distinct, then
the fundamental solutions are λk−11 , kλk−11 , and λk−12 , and the general solution of the
recurrence relation is

ak = aλk−11 + bkλk−11 + cλk−12 .

We will use the method of finding fundamental solutions as in the order-two case to
determine when an order-three homogeneous recurrence relation yields a matrix that has
maximum rank of 3, and when it drops to 2 or even 1.

Theorem 6. An m × n recurrence matrix R whose entries come from an order-three
homogeneous recurrence relation with seeds a0, a1, a2 has rank 2 if and only if a2 = (λ1 +
λ2)a1−λ1λ2a0 where λ1 and λ2 are (not necessarily distinct) eigenvalues of the recurrence
relation or if λn1 = λn2 for two distinct eigenvalues of the recurrence relation, and rank 1
if and only if, in addition, a1 = λa0 where λ is an eigenvalue of the recurrence relation,
or λn1 = λn2 = λn3 for three distinct eigenvalues of the recurrence relation.

Proof. Entries of RT (read column-by-column) come from an order-three homogeneous
recurrence relation

ak = γ1ak−1 + γ2ak−2 + γ3ak−3

so the (i, j)-entry of R is

a(j−1)m+i = γ1a(j−1)m+i−1 + γ2a(j−1)m+i−2 + γ3a(j−1)m+i−3.

As before, for i = m, ..., 4, replacing Row i of R with

(Row i)− γ1(Row (i− 1))− γ2(Row (i− 2))− γ3(Row (i− 3))

reduces entries in Row i to

a(j−1)m+i − γ1a(j−1)m+i−1 − γ2a(j−1)m+i−2 − γ3a(j−1)m+i−2 = 0.

Thus, rank(R) ≤ 3, and we determine when rank(R) = 2 or rank(R) = 1 using the
method of fundamental solutions.
5.1 Case 1: One repeated eigenvalue
To find a, b, and c in ak = aλk + bkλk + ck2λk we use Cramer’s rule on the system 1 0 0

λ λ λ
λ2 λ2 λ2

 ab
c

=

a0a1
a2

,

which after left multiplying by the inverse of the coefficient matrix on both sides, and
dividing by the determinant of the coefficient matrix, yields the solutionab

c

= 1
2λ3

 2λ3a0
−λ(3a0λ

2 − 4a1λ+ a2)
λ(a0λ

2 − 2a1λ+ a2)

.
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So if R is the corresponding recurrence matrix R, then

rank(R) = rank (RT ) =


3 if a, b, c 6= 0

2 if a, b 6= 0, but c = 0, i.e., a2 = 2λa1 − λ2a0
1 if a 6= 0, but b = c = 0, i.e., a1 = λa0 and a2 = λ2a0

0 if a = b = c = 0

By Theorem 4, {sn} is the set of distinct values taken by the roots of its corresponding
characteristic polynomial. In this case, sn = {λn1} and rank Rm,n(ak) = maxl{Kl : λn1 =
λn1} = 3. Thus, there is no possible width drop in this particular case.
5.2 Case 2: Three distinct eigenvalues
To find a, b, and c in ak = aλk1 + kλk2 + cλk3 we use Cramer’s rule on the system 1 1 1

λ1 λ2 λ3
λ21 λ22 λ23

 ab
c

 =

a0a1
a2

,

which after left multiplying by the inverse of the coefficient matrix on both sides, and
dividing by the determinant of the coefficient matrix, yields the solutionab

c

 =


a0λ1λ2−a1λ1−a1λ2+a2
λ1λ2−λ1λ3−λ1λ2−λ23
−a0λ1λ3+a1λ1+a1λ3−a2
λ1λ2−λ1λ3+λ1λ2−λ22
a0λ2λ3−a1λ2−a1λ3+a2
λ2λ3−λ1λ3λ1λ2+λ21

.

So if R is the corresponding recurrence matrix R, then

rank(R) = rank (RT ) =



3 if a, b, c 6= 0 and λn1 6= λn2 , λ
n
1 6= λn3 , or λn2 6= λn3

2 if a, b 6= 0, but c = 0, i.e., a2 = (λ2 + λ3)a1 − λ2λ3a0
2 if λn1 = λn2 or λn1 = λn3 or λn2 = λn3
1 if a 6= 0, but b = c = 0, i.e., a1 = λ1a0

1 if λn1 = λn2 = λn3
0 if a = b = c = 0

By Theorem 4, sn = {λn1 , λn2 , λn3} is the set of distinct values taken on by the roots
of its corresponding characteristic polynomial, and rank Rm,n(ak) = maxl{Kl : λn1 =
λn1} + maxl{Kl : λn1 = λn2} + maxl{Kl : λn1 = λn3} = 3. Thus, there exists a width rank
drop to 2 when λn1 = λn2 , λn1 = λn3 , or λn2 = λn3 , and a width rank drop to 1 if λn1 = λn2 = λn3 .
5.3 Case 3: One repeated and one distinct eigenvalue
To find a, b, and c in ak = aλk1 + bλk2 + ckλk2 we use Cramer’s rule on the system 1 1 0

λ1 λ2 λ2
λ21 λ22 2λ22

 ab
c

 =

a0a1
a2


which after left multiplying by the inverse of the coefficient matrix on both sides, and
dividing by the determinant of the coefficient matrix, yields the solutionab

c

=


λ22a0−2λ2a1+a2

(λ1−λ2)2
λ21a0−2λ1λ2a0+2λ2a1−a2

(λ1−λ2)2
λ1a1−λ1λ2a0+λ2a1−a2

λ2(λ1−λ2)
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So if R is the corresponding recurrence matrix R, then

rank(R) = rank (RT ) =


3 if a, b, c 6= 0 and λn1 6= λn2
2 if λn1 = λn2 or a, b 6= 0, but c = 0, i.e., a2 = (λ1 + λ2)a1 − λ1λ2a0
1 if a 6= 0, but b = c = 0, i.e., λ1 = a1

a0

0 if a = b = c = 0

By Theorem 4, sn = {λn1 , λn2} is the set of distinct values taken on by the roots of its
corresponding characteristic polynomial, and rank Rm,n(ak) = maxl{Kl : λn1 = λn1} +
maxl{Kl : λn1 = λn2}= 3. Thus, there exists a width rank drop to 2 when λn1 = λn2 , and a
width rank drop to 1 is non-existent since there is not another possible pair of eigenvalues’
nth power that can coincide.

In general, the rank of an m × n recurrence matrix will drop if we can rewrite its
corresponding recurrence relation to have lower order or when the distinct eigenvalues’
nth powers coincide (i.e., a width drop). See Examples 3.1 and 3.2 for an example of
each (note that the eigenvalues in Example 3.2 are ±1, so the rank drops only when the
matrix has even width, i.e., an even number of columns).

6. Further Research

We will begin the generalization for order-four homogeneous recurrence relations using
Bozlee’s method to determine when the relations can be rewritten to have order 3, 2, or
1 and when the rank of the corresponding recurrence matrices drop.
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