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Abstract

It is well documented that the recent colonization of Lake Michigan
by dreissenid bivalves lead to a dramatic reconfiguration of the lake’s
ecosystem. These changes resulted in benthification, which is a trans-
port of a substantial part of the ecosystem’s biomass to the bottom of
the lake’s water. While various datasets support this observation, a
quantitative evaluation of overall ecosystem productivity, its spatial dis-
tribution and its effects on the dynamics of the lake ecosystem are not
fully understood. The formulation, parametrization and numerical so-
lution of mathematical models representing the major components of
the altered lake ecology could help the understanding and quantitative
evaluation of the new ecological dynamics. We present a detailed for-
mulation of a simplified mathematical model and a numerical method
for its solution. The model takes into account the competition among
primary producer species for the varying light and two different ni-
trogenous nutrient sources in the pelagic, as well as the impact of the
grazing and nutrient recycling by a substantial and changing dreissenid
mussel population in the benthos.
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1 Introduction
Despite human efforts to keep them robust and viable all natural ecosystems
are subject to continuous change. When there is external pressure forced
upon an ecological structure, at some scale the system will adjust. Deter-
mining the robustness and intrinsic stability of an ecosystem and the specific
implications of such transforming events is difficult. Most of the time a multi-
tude of feasible implications can be conjectured but without the appropriate
tools to analyze and approximate the underlying dynamics and complexity of
a the system such forecasting efforts essentially stay at the level of informed
guessing. The ecological structure within Lake Michigan is an example of one
ecosystem that has gone through a dramatic transformation recently. Within
the past two decades Lake Michigan has been subject to the large impact
colonization of an invasive bivalve species, the quagga mussel.

Since the late 1990’s many research endeavors document the colonization
and its impact on the ecosystem[1, 2, 8]. The quagga mussel has thrived in
the conditions present in Lake Michigan because of derived niches[5]. As
a result of this, there is an overall reduction of phytoplankton biomass in
the lake which is evident with the loss of the spring bloom for diatoms[1, 6].
Fundamentally the success of these mussels have drawn a large portion of the
lake’s biomass to its benthic region, a process referred to as benthification.

Such transformation can be particularly influential for larger species within
the food-web and gives reason for investigation. In order to evaluate the im-
pact of the quagga mussel on phytoplankton biomass, now two major actors
in the lake ecosystem, we model their interactions. Our model involves one
spatial dimension (depth), contains two phytoplankton densities subject to
light availability and two nitrogenous compounds, nitrate and ammonia that
include a preferential factor for ammonia uptake. This model incorporates
a quagga mussel growth model component in the benthos and enforces the
impact of mussel grazing as a boundary condition on the phytoplankton and
nutrient dynamics. This research endeavor makes a step towards quantifying
the impact of the quagga mussel, and can help infer probable outcomes in the
reformulated ecosystem.
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2 Mathematical model
To model the ecological impact of a generalized water column strictly related
to the colonization of quagga mussels we consider the physical and biological
processes involved. To construct qualitative representation for a simplified
ecological dynamics, we can use conservation laws for the nutrients consid-
ered. This basic conservation concept means that the time rate of change of
a distributed quantity in some spatial domain is equal to its rate of growth
within the domain and its net rate of transport, or flux, through the bound-
aries of the domain:

d
dt

∫ b

a
µ(z, t)dz= φ(a, t)−φ(b, t)+

∫ b

a
f (z, t)dz=−

∫ b

a
φz(z, t)dz+

∫ b

a
f (z, t)dz.

Here µ represents the spatially distributed density of a quantity under con-
sideration, φ is its flux/transport and f (z, t) is its local rate of growth. In
this context we assume that µ(z, t) represents a nitrogen density in the water
column in the form of phytoplankton biomass or dissolved nutrient at time
instant t and depth z in the body of water, taken to be uniform along the other
two spatial dimensions. The domain is considered to be a watercolumn with
a small constant area. The conservation law in this case can be simplified
and formulated as a one-dimensional integro-differential equation. For in-
stance we can consider the model to represent the dynamics in an offshore
basin within a large lake. The above conservation law implies that the den-
sity µ considered also satisfies at any depth z and time t the partial differential
equation

µt(z, t) =−φz(z, t)+ f (z, t).

2.1 Phytoplankton Biomass
Lake Michigan has a large variety of phytoplankton species that can be orga-
nized into a number of functional species groups. Species within and across these
species groups have different adaptations and varying growth potential under dif-
ferent light and nutrient conditions. We demonstrate our modeling approach on
the simple case of competitive growth of two phytoplankton species in the water-
column with biomass densities ω1(z, t) and ω2(z, t). Generalizing the model for
higher number of species is relatively straightforward.
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We additionally assume that phytoplankton species have the capacity to ori-
ent their position in the water column by regulating their buoyancy to enhance
their growth potential. This capacity is represented by νi(N1,N2, I) in the model,
that stands for a nutrient and light dependent buoyancy or rate at which the ith
phytoplankton species rises and sinks in the watercolumn. An additional param-
eter considered important for the flux of phytoplankton biomass throughout the
watercolumn is the effective diffusion D(z), which may be depth dependent.

The other main variable in our model represents the density of nutrient sources
in the pelagic available for uptake for the phytoplankton. We consider densities of
two nitrogen based compounds, ammonia N1(z, t) and nitrate N2(z, t). Ammonia
metabolism is biologically more efficient and therefore it is a preferred source of
consumption by the phytoplankton. Because of this we include a preferential
factor that suppresses the consumption of nitrate when ammonia is present in
sufficient quantities.

Light availability also regulates phytoplankton photosynthesis and growth.
The light intensity I(z, t) acts as an external forcing in the model and is being
attenuated in the watercolumn with increasing depth. Additional to the impact of
water, light attenuation is also influenced by the biomass densities present in the
system. This phenomenon is quantitatively described by the Lambert-Beer Law
with absorbance being determined by background attenuation and the concentra-
tion of the phytoplankton species.

2.2 Nutrient Densities
As a simplifying choice we incorporate ammonia and nitrate as nitrogen nutrient
source in the model, ignoring phosphorus or other nutrients. This is because the
densities of alternative nitrogen sources are substantially impacted by the presence
of the benthic mussel population, and may drive a more complex and structured
phytoplankton growth that can be observed in the formation of thin differential
growth layers of phytoplankton.

Unlike the phytoplankton densities that have a convective flux component due
to buoyancy, nutrient densities N1 and N2 are subject to diffusive fluxes only. Nu-
trient accumulation is affected by an instantaneous resupply from decomposing
phytoplankton and a constant seeping rate from the benthic layer into the sys-
tem. Both N1 and N2 are approached in a similar fashion with the addition of the
preferential factor for N1 (ammonia). We also consider the contribution of am-
monia to the system via the mussel density at the bottom boundary. Additional to
an assumed nutrient release from sediment, ammonia is also resupplied through
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excretion by large mussel biomass in the benthos.

2.3 Mussel Density
The drastic change in phytoplankton biomass and nutrient distribution over recent
years is correlated to the quagga mussel colonization[3]. The adult population
of this species is in the benthic layer. We ignore in our model the likely sub-
stantial, but short-term impact of mussel spawning on the pelagic phytoplankton
population. This restricts mussel dynamics to the bottom boundary, and thus it
can be represented by an ordinary differential equation (or a system of ODEs if
the size-structure of the mussel population would be modeled). This in turn can
be used as boundary condition or boundary forcing to the dynamics in the pelagic
represented by a system of partial differential equations (PDEs) derived from con-
servation laws. The mussels’ activity at the bottom boundary of the watercolumn
is observed to cause an increase in ammonia concentration and a decrease in phy-
toplankton. The bulk mussel biomass density in the benthos in the model is rep-
resented by the variable M(t).

2.4 Parameter and Variable Definitions

Table 1: Parameter and Variable Definitions

ν1,ν2 Sinking/Buoyancy Rates for Phytoplankton Species
D(z) Depth Dependent Diffusive Coefficient
N1 Ammonia Density
N2 Nitrate Density
ωi Phytoplankton Biomass Densities
I Light Intensity
ρ i

max Phytoplankton’s Maximal Growth Rate
Ki

N j
Saturation Constant for Nutrient Uptake Limitation Phytoplankton Species

Km Saturation Constant for Mussel Uptake of Phytoplankton Species
Ki

I Saturation Constant for Light Limitation Phytoplankton Species
λi Ammonia Preference Factor
εi j Instantaneous Release of Nutrients (i.e. Recycling Fractions)
`i Loss Parameters (Viral Lysis, Grazing etc.)
M Mussel Density
rmax Maximal Growth Rate for Mussel Population
Mmax Maximal Carrying Capacity for Mussel Population
ab Light Attenuation Constant Through Water
ai Light Attenuation Constant for Phytoplankton Species
α Ammonia Release Constant
β i

r Sediment Release of Ammonia and Nitrate From Benthic Layer
ri Mussel uptake rates of phytoplankton species
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2.5 Model

∂ω1

∂ t
= −(ν1ω1)z +Dzω1z +Dω1zz +G1(ω1,N1,N2, I), (1)

∂ω2

∂ t
= −(ν2ω2)z +Dzω2z +Dω2zz +G2(ω2,N1,N2, I), (2)

∂N1

∂ t
= DzN1 +DN1zz −H1(ω1,ω2,N1,N2, I), (3)

∂N2

∂ t
= DzN2 +DN2zz −H2(ω1,ω2,N1,N2, I), (4)

dM
dt

= rmax

(
1− M

Mmax

)(
ω1 +ω2

kM +ω1 +ω2

)
M−qM, (5)

where

G1(ω1,N1,N2, I,) =

(
ρ

1
max

(
N1

K1
N1
+N1

+
N2

K1
N2
+N2

· 1
λ1 +N1

)
L1 − `1

)
ω1

G2(ω2,N1,N2, I,) =

(
ρ

2
max

(
N1

K2
N1
+N1

+
N2

K2
N2
+N2

· 1
λ2 +N1

)
L2 − `2

)
ω2

H1(ω1,ω2,N1,N2, I) = ρ
1
max

(
N1

K1
N1
+N1

)
L1ω1 +ρ

2
max

(
N1

K2
N1
+N1

)
L2ω2

−(ε11`1ω1 + ε12`2ω2)

H2(ω1,ω2,N1,N2, I) = ρ
1
max

(
N2

K1
N2
+N2

)
ϒ1L1ω1 +ρ

2
max

(
N2

K2
N2
+N2

)
ϒ2L2ω2

−(ε21`1ω1 + ε22`2ω2)

with

L1 =

(
I

K1
I + I

)
, L2 =

(
I

K2
I + I

)
, ϒ1 =

(
1

λ1 +N1

)
, ϒ2 =

(
1

λ2 +N1

)
,
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and

I = I(z, t) = I0(t)e−
∫ z

0 ab+a1ω1(s)+a2ω2(s)ds.

Initial conditions :

ω1(z,0)=ω
0
1 (z), ω2(z,0)=ω

0
2 (z), N1(z,0)=N0

1 (z), N2(z,0)=N0
2 (z), M(t)=M0

Boundary conditions for t > 0 on the top

∂ω1

∂ z

∣∣∣∣
z=0

= 0,
∂ω2

∂ z

∣∣∣∣
z=0

= 0,

∂N1

∂ z

∣∣∣∣
z=0

= 0,
∂N1

∂ z

∣∣∣∣
z=0

= 0,

and on the bottom

∂N1

∂ z

∣∣∣∣
z=d

=

(
α

ω1 +ω2

kM +ω1 +ω2
+βq

)
M+β

1
r ,

∂N2

∂ z

∣∣∣∣
z=d

= β
2
r ,

∂ω1

∂ z

∣∣∣∣
z=d

= r1

(
ω1

kM +ω1 +ω2

∣∣∣∣
z=d

)
M,

∂ω2

∂ z

∣∣∣∣
z=d

= r2

(
ω2

kM +ω1 +ω2

∣∣∣∣
z=d

)
M.

3 Analysis of the Model
In this section we outline the numerical solution of the model. We implement
a spatial discretization scheme to approximate the solution of the system of
partial differential equations using Matlab’s built-in ODE suite.

3.1 Discretization of the Water Column
To simplify the partial differential equations representing phytoplankton biomass
and nutrient densities we discretize depth into a uniform mesh of size N on [0,d].
Biomass densities, ωi(z, t), and nutrient densities, Ni(z, t), are approximated at the
mesh points, and this in turn, lets us use a finite volume type method to approxi-
mate the partial derivatives in the convective and diffusive terms on the right side
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of the partial differential equations. For the convective terms we use a second or-
der upwinding scheme, while for the diffusive terms we utilize a central difference
approximation. Our model contains an integral term to represent light intensity,
which is influenced by phytoplankton densities in the whole watercolumn above
the given depth. The integral is approximated by the trapezoidal rule. This devel-
opment follows the treatment of a similar problem in [4] and [7]. Along with the
equation for the mussel dynamics, such an approach results in a large nonlinear
system of 4N +1 ordinary differential equations that is integrated by a stiff solver
in Matlab’s ode suite.

3.2 Simulation Results
Model parameter values, except for the mussel dynamics parameters were ob-
tained from [9]. Through simulations we investigated various parameter values
associated with the quagga dynamics in our simplified model to see if we could
qualitatively mimic documented dynamics of recent years. Of a particular interest
is the way the mussels’ excretion of ammonia impacts phytoplankton density.

In Figure 1 below we can see layering of the phytoplankton densities. Specif-
ically, the first phytoplankton species (ω1) forms a layer between 5-10 meters and
species two lies closer to the benthic region around 20 meters. In Figure 2 we
see a similar layering effect with identical parametrization for the phytoplankton
species. However, we see that species (ω2) in the bottom layer carries a substan-
tially larger biomass, due the increase in the value of the parameter describing the
ammonia excretion by the mussels. We can therefore conclude that the mussel
density aids in the layering effect and and modifies phytoplankton distribution in
the benthic region.

This model has been constructed to explore a possible way to quantify the im-
pact the quagga mussel has had on Lake Michigan. Our simulations qualitatively
match the layered phytoplankton population structure observed in the lake. In the
future, we plan to impose an age structure on the mussel population to better pre-
dict potential ecological changes as the first generation colonizers come to the end
of their life cycle. The model is also flexible enough so that it could accommodate
more phytoplankton or nutrient species.
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Figure 1: Parameter values for mussel dynamics: max mussel
growth rate rmax = .08 (time−1), carrying capacity Mmax = 200
(mussel/m2), half-saturation for growth limits kM = .1 (cells/ml),
mortality rate q = .003 (time−1), nutrient excretion factor α = .1,
nutrient release from death factor β = .5 and uptake of phyto-
plankton factors r1 = r2 = .2.

Figure 2: Parameter values for mussel dynamics: max mussel
growth rate rmax = .08 (time−1), carrying capacity Mmax = 200
(mussel/m2), half-saturation for growth limits kM = .1 (cells/ml),
mortality rate q = .003 (time−1), nutrient excretion factor α =
.35, nutrient release from death factor β = .5 and uptake of phy-
toplankton factors r1 = r2 = .2.

1675



References
[1] Cuhel, Russell L., and Carmen Aguilar. ”Ecosystem Transformations of the

Laurentian Great Lake Michigan by Nonindigenous Biological Invaders.”
Annual Review of Marine Science 5.1 (2013): 289-320. Print.

[2] Fahnenstiel, G., et al. ”Lake Michigan Lower Food Web: Long-Term Obser-
vations and Dreissena Impact.” Journal of Great Lakes Research 36, Supple-
ment 3.0 (2010): 1-4. Print.

[3] Fahnenstiel, G., et al. ”Recent Changes in Primary Production and Phyto-
plankton in the Offshore Region of Southeastern Lake Michigan.” Journal of
Great Lakes Research 36, Supplement 3.0 (2010): 20-9. Print.

[4] Huisman, J., Sommeijer, B. ”Population Dynamics of Sinking Phytoplank-
ton in Light-limited Environments: Simulation Techniques and Critical Pa-
rameters” Journal of Sea Research 48. (2002) 83-96. Print.

[5] Karatayev, AlexanderY, LyubovE Burlakova, and DiannaK Padilla. ”Zebra
Versus Quagga Mussels: A Review of their Spread, Population Dynamics,
and Ecosystem Impacts.” Hydrobiologia 746.1 (2015): 97-112. Print.

[6] Kerfoot, W. Charles, et al. ”Approaching Storm: Disappearing Winter
Bloom in Lake Michigan.” Journal of Great Lakes Research 36, Supplement
3.0 (2010): 30-41. Print.

[7] Klausmeier CA, Litchman E. ”Algal games: the vertical distribution of phy-
toplankton in poorly mixed water columns” Limnol Oceanogr 46. (2001):
1998-2007. Print.

[8] Nalepa, T. F., and Donald W. Schloesser. Quagga and Zebra Mussels : Biol-
ogy, Impacts, and Control / Edited by Thomas F. Nalepa and Don Schloesser.
Second edition. ed. Boca Raton : CRC Press/Taylor Francis Group, 2014.
Print.

[9] Stojsavljevic, Thomas George, ”Mathematical Modeling of Competition for
Light and Nutrients Between Phytoplankton Species in a Poorly Mixed Wa-
ter Column” (2014). Theses and Dissertations. Paper 429.

1676


	Introduction
	Mathematical model
	Phytoplankton Biomass
	Nutrient Densities
	Mussel Density
	Parameter and Variable Definitions
	Model

	Analysis of the Model
	Discretization of the Water Column
	Simulation Results


