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Abstract 

 
Modern power grids quickly distribute electricity across large geographic areas with a high level of reliability. 

However, they are not invulnerable to widespread failures. In occasions of hardware failure, or fault (such as a 

transmission line tripping) the system can operate in a sub-optimal state and result in a loss of electric power to some 

customers. These events require grid operators to locate the point of failure in order to resolve the problem, a process 

which can take minutes or several days in large cascading blackouts. In recent years, engineers have explored ways to 

automate the rerouting process so that the grid can regulate itself. One such proposed system is the Real-Time Smart 

Grid, which seeks to monitor the vitals of a power grid in real-time. In this paper, the anomaly detection software 

components of the Real-Time Smart Grid is described. The solution proposed here incorporates the Phoenix++ 

MapReduce framework to process the large amount of data constantly produced by the grid in parallel. The algorithm 

enables the Real-Time Smart Grid to detect anomalies rapidly, provide data to automated controllers, and notify grid 

administrators of the location of any points of failure. This can enable grid operators to analyze and mitigate potential 

issues and concerns in a matter of seconds. 
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1. Introduction 

 
Many devices used today depend on a constant flow of electricity. A blackout poses a significant risk to national 

security. Yet, much of the core infrastructure (e.g. transmission and distribution systems) of the United States power 

grid has not been updated in over half a century. In 2003, a blackout affected areas of the Northeastern and Midwestern 

United States, eliminating power to 50 million citizens. The outage was caused by the loss of three transmission lines 

in Ohio over the course of an hour [1]. A joint task force was convened to investigate the cause of this blackout and 

provide recommendations to prevent such a large event from reoccurring. Four main causes and forty-six 

recommendations for correction were presented in the task force’s final report [2]. The main causes concerned 

insufficient system analysis and operation. While capable systems for monitoring and operation of the power grid are 

already implemented, large blackouts continue to occur and their impacts underscore the need for improvement.  

   One innovation that has been introduced to improve reliability and resiliency of the power grid under extreme 

circumstances (e.g. large weather events), is the development and deployment of the smart grid [3] technology. In 

order for a power grid to successfully operate, it must have wide area situational awareness. One way in which smart 

grids allow for more efficient and sustainable systems is through sophisticated and thorough gathering of data from 

the grid, creating a Wide Area Monitoring and Control (WAMC) system. WAMC systems enable the monitoring of 

grid performance and current operating state, and facilitates advanced wide area control when required. The WAMC 

technology increases grid operators’ situational awareness and control capability. 
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In this paper, a wide area measurement system that enables real-time detection of anomalies in the smart grid is 

presented. The system developed can process large amounts of data very quickly to provide analysis in real-time. For 

the purposes of this work, real-time is defined in the order of seconds. At the core of the design are two MapReduce 

[4, 5] algorithms that are capable of sifting through large amounts of power data for operator-defined anomalies. 

Anomalies are communicated to grid managers through a graphical user interface (GUI).  Finally, a database stores 

historical data and outputs information to grid operators. With this rapid access to information, grid managers have 

the power to make adjustments to the power grid in real-time order to avoid major problems.     

The proposed method was tested on a smart grid testbed that provides 1000:1 scale emulation of a seven bus power 

grid. The program is run against “slices” of data output by the grid, accumulated over specified intervals of time. 

Results illustrate timing results against time slices of 15, 30, 45, and 60 minutes of data. While the slices of data are 

not indicative of real-time analysis, the quantity of data in these time slices reflects data sizes from a much larger 

system. This is more representative for an application on a real power grid. For example, sampling data from seven 

buses over 60 minutes provides as much data as sampling data from 32,400 nodes for one second.  Preliminary results 

indicate that on a 60-minute time slice, simple-constraint anomalies can be detected in 6.73 seconds, and temporal-

constraint anomalies in 13.20 seconds.  

The presented results suggest that the proposed algorithm is capable of detecting anomalies on the order of seconds 

for large sets of power system measurement data. This initial work is simply analyzing raw data for anomalies. These 

anomalies could be the result of bad measurement data or an issue with the power grid operation. At this point, the 

method does not differentiate between the two. Future work will implement further analysis into this algorithm.   

The rest of this paper is organized as follows. Section 2 of this paper outlines the design of the project, and explains 

how the MapReduce algorithm fits within the system at large. Section 3 discusses experimental design and results. 

The paper is conclude in Section 4. 

 

 

2. Methodology 

 
Figure 1 depicts an overview of the system design. Prior work [6] at USMA has developed a smart grid testbed for 

developing and studying cyber-physical and WAMC systems. The power system is emulated with real hardware and 

instrumented with Phasor Measurement Units (PMUs). Syncrophasor data is transmitted from the testbed to a 

Windows machine, which currently houses the GUI and database, which is connected to the OpenPDC [7] system. 

This data is transferred from the database to a shared directory on the Linux server in pre-determined time slices, and 

stored as a comma separated value (CSV) file. The Linux server runs the anomaly detection algorithm, and logs any 

errors. If errors are found, they are transmitted directly to the GUI. 

   In real systems, time slices will need to be necessarily small; the larger the time slices the longer the response time. 

However, in this work on a small scale emulation, the goal in picking time slices was to generate larger datasets in 

order to stress-test the proposed framework. A 60-minute time slice in the scaled emulation provides the same amount 

of data as a one second time slice from 32,400 PMUs in a real system. Therefore, the results on these larger intervals 

in scaled-emulation allow for predicting performance on a real system, where the same amount of data is captured in 

smaller time intervals.  

 

 



907 
 

 
 

Figure 1. Overview of the system design 

 

2.1. MapReduce  
 
In order to analyze data at a real-time pace, the anomaly detection algorithm utilizes MapReduce [4]. The MapReduce 

paradigm consists of two primary phases: map and reduce. During the map phase, each instance of the map function 

(mapper) takes a chunk of data as input and converts it into a series of (key,value) tuples. These tuples go through a 

combiner which sorts them into (key,list(values)) tuples, where all the values with a corresponding key are grouped 

together.  During the reduce phase, each instance of the reduce function (reducer) takes a set of (key, list(value)) tuples 

and performs a reduction operation on the list portion of each tuple. The final output is a set of (key,value) tuples, 

where the corresponding value of each key is the result of the reduction operation.  

   Phoenix++ [5],  a shared-memory implementation of the MapReduce framework, was used for implementing the 

anomaly detection approach. Prior work [8,9] has shown that Phoenix++ is very effective in achieving speedup on 

multicore architectures. The focus was on achieving speedup on a small cluster of multicore machines for this project, 

as they are a simpler and low-cost alternative for WAMC implementation. Other implementations of MapReduce such 

as Hadoop [10] require larger clusters and petascale data in order to fully leverage the power of the system. Phoenix++ 

enables the features of MapReduce (fault tolerance, ease of use) in a more cost-effective way. However, the algorithms 

discussed in this paper can be implemented in a framework such as Hadoop, if the need arises. 

 

2.2. Anomaly Detection Algorithms 

 
In order to rapidly process syncrophasor data outputted from the testbed, two novel MapReduce algorithms were 

developed which were implemented using the Phoenix++ framework. The two algorithms tackle two categories of 

anomalies: constraint-based anomalies and temporal-based anomalies. Constraint-based anomalies are measurements 

that err from a pre-defined window of allowed variance. For example, a voltage measurement can be measured as 

being too low or too high. In contrast, temporal-based anomalies are only erroneous when viewed in the context of a 

time-sequence of measured values. For example, frequency differential anomalies are detected by examining 

successive measurements from a single PMU. If the frequency over time suddenly increases or decreases, a reading 

is anomalous.  

    The two algorithms discussed are meant to be run in parallel on two different machines on the network. The shared 

directory is accessible on the network, enabling each machine to access the data necessary for simultaneous analysis. 

On each machine, each parallel algorithm leverages all available cores to detect anomalies. Thus, there are two layers 

of parallelism: node level and core level. This allows the two algorithm to run efficiently and cheaply in tandem. 

     Figure 2 depicts an overview of the constraint-based anomaly detection MapReduce algorithm. The input to the 

algorithm is a CSV file containing a signal ID, timestamp data, and measurement data. Each unique measurement 
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appears on its own row of the CSV file. The signal ID uniquely identifies a substation and the type of measurement. 

Observe the first line of the “input data” in Figure 2. The mock ID “A-Volt” indicates the measurement is a voltage 

measurement originating from substation A. The next comma separated value in that line is a timestamp indicating 

when the measurement was taken (shown in military time). In this example, the timestamp indicates the voltage was 

measured at 1200 hours. The last comma separated value denotes the actual measurement, 26.1 kilovolts in this 

example.   

 

 

 
 

Figure 2. Constraint-Based Anomaly detection algorithm 

 

   To detect constraint-based anomalies, the input data first passes through a splitter function that separates the data 

into chunks. The mapper then processes each chunk for anomalies. The signal ID is used to determine the type of 

reading (i.e., voltage), and the corresponding measurement is checked to verify that it is within an allowable range. In 

Figure 2, the voltage from substation B has a measured value of 28.05 (third line of CSV file), which is outside the 

allowed variation. The map function thus marks it as an anomaly and emits it to the reduce function. In contrast, the 

measurement in the first line of the CSV file is not anomalous. The map phase confirms this, and the measurement is 

silently ignored. Note that only anomalous measurements are emitted to the reduce phase. These anomalies, grouped 

by signal ID, are then outputted to the GUI. Note that each mapper runs independently and simultaneously on multiple 

cores.  

   The temporal-based anomaly detection algorithm is similar to the constraint-based detection algorithm. It begins 

again with the same CSV input file. The splitter function splits the data into equal sized chunks. The mapper, however, 

outputs (key,value) pairs where the key is the signal ID, and the value is the tuple (timestamp, measurement). The 

combiner sorts the data into (signal ID, list(timestamp, measurement)) tuples. In the reduce phase, the list of 

(timestamp, measurement) tuples associated with each signal ID is sorted according to timestamp, allowing the data 

to be analyzed sequentially. While the principle benefit of this approach is that it enables the detection of temporal 

anomalies, the temporal-constraint algorithm is more inefficient due to the extra sorting step required.  

 

 

3. Experimental Design and Results  
 

To test the proposed approach, a 1000:1 scale emulation of a distribution power grid with real hardware, including 

transmission lines, buses, protection relays, and PMUs was used. Figure 3 depicts this testbed. The data source is eight 

PMUs connected to the power grid. A PMU manages power and records incoming data from the power grid. Data 

flows from the PMUs to a Phasor Data Concentrator (PDC) which processes, time aligns, and archives the PMU data 

to a database, which also keeps track of long term data for future use of analyzing trends. A connection string from 

the program OpenPDC connects to Microsoft SQL Server 2008. The database was created from the OpenPDC default 

and stores all of the measurement values from the PMUs. SQL commands were used to export the requisite 

syncrophasor data from the database to the desired CSV files, which represent time intervals of size t. Lastly, the GUI 

enables the grid manager to identify grid anomalies and make adjustments to the grid.    



909 
 

 
 

Figure 3. The physical testbed and OpenPDC server 

 

   The primary objective is to process syncrophasor data as efficiently as possible. Parallel computation was leveraged 

to provide timely information to operators, and potentially tie processed data to wide area control applications. A 

controllable load allows for replication of any load profile, and enables grid managers to make adjustments to the grid 

as anomalies arise. A solar micro-inverter provides a secondary source of power that converts solar energy into usable 

current for the grid. The GUI used HTML for the basic design of the interface. PHP is used to receive data from the 

database and the anomaly detection server to display data to the user. The GUI updates itself every second, displaying 

new values from its data source. In this section, the anomaly detection criteria is defined for the testbed and the 

performance of the anomaly detection algorithms is presented. 

 

3.1. Anomaly Detection Criteria  

 
Table 1 lists the criteria for the 1000:1 power grid emulation in real world quantities. Please note that actual emulated 

values are orders of magnitude smaller for voltages and currents. However, measurement equipment is scaled such 

that the raw data is relative to real-world values. The parameters can be varied based on application. To use this 

approach in a different framework, it suffices to update the constraints information.  

   For any power system, operators want to track under voltage bus or overvoltage bus situations. It is also desirable 

to detect if subsequent samples differ too rapidly, as this can be indicative of an underlying issue. If the grid channels 

too much current, there is risk in damaging the components of the grid, as there are limitations on lines and 

transformers in regards to current carrying capability. Frequency must be tightly monitored around the value of 60 

Hz, the standard of the United States power grid. Furthermore, the difference between subsequent frequency samples 

should remain relatively low in order to ensure a steady frequency state. For the purposes of this proof of concept, the 

voltage and frequency differentials are analyzed at subsequent samples (sample rate is 1/60 seconds). However, in 

application the acceptable bound for these differentials will be heavily dependent on the system being monitored. The 

parameters in this anomaly detection algorithm can be set to appropriate values based on the application. 

 

Table 1. Criteria for the Power Grid Emulation 

 

Parameter Acceptable Bounds 

Voltage 25-27.6 kV 

Voltage Differential 0 – 0.0263 kV 

Current 0 – 2000 A 

Frequency 59.95-60.05 Hz 

Frequency Differential 0 – 0.02 Hz 
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3.2. Performance of Anomaly Detection Algorithm 

 
Performance of the anomaly detection algorithms was benchmarked on a 12-core machine running Red Hat Enterprise 

Linux. Each core is an Intel Xeon X5690 with a clock rate of 3.47 GHz. The system has 141 GB of main memory, 

and 1 TB of hard disk. Time slices of data read from the OpenPDC server in 15 minute, 30 minute, 45 minute, and 60 

minute increments were used. The number of cores was varied from 1 to 8 (in powers of 2), and computed the average 

run-time and speedup.  

   Table 2 summarizes the experimental results of the constraint-based anomaly detection algorithm. A 15 minute time 

slice takes 4.06 seconds to process on a single core, while a 60 minute time slice takes approximately 17.55 seconds.  

Increasing the number of cores does result in an improvement in run-time, albeit a non-linear one. For the 15-minute 

increment slice, the run-time was reduced to 1.65 seconds on 8 cores, a speedup of 2.46. For the 60-minute slice, a 

run-time of 6.73 seconds was achieved on 8 cores, which corresponds to a speedup up 2.61. This data processing 

speed would be indicative of analyzing data from a one second time interval from 32,400 nodes on a power grid in 

6.73 seconds for eight cores.    

 

Table 2. Average run-time results for constraint-based detection algorithm. 

 

Time Slice 1 Cores 2 Cores 4 Cores 8 Cores 

15 minutes 4.06 2.71 2.04 1.65 

30 minutes 8.43 5.61 4.10 5.09 

45 minutes 12.84 8.34 6.33 5.09 

60 minutes 17.55 11.53 8.41 6.73 

 

   Table 3 depicts the performance analysis of the temporal-based anomaly detection algorithm. The serial version of 

this algorithm took approximately the same as the constraint-based approach. However, the parallel implementation 

was not as efficient as the constraint-based approach. This is perhaps to be expected, given the additional sorting step 

required in the reduce phase of the temporal-based algorithm. On the 15-minute time slice, approximately 36% 

improvement was observed when running the approach on eight cores. On the 60-minute time slice, a 33% 

improvement.   

 

Table 3. Average run-time results for 2nd algorithm variant 

 

Time Slice 1 Cores 2 Cores 4 Cores 8 Cores 

15 minutes 4.34 3.86 3.25 3.19 

30 minutes 8.60 7.24 6.76 6.53 

45 minutes 13.09 11.10 10.26 10.05 

60 minutes 17.53 14.67 13.78 13.20 

 

 

   The parallel approach presented here could benefit from some optimization. First, there are likely inefficiencies in 

the implementation. This initial implementation is just a proof of concept; the main goal was to show that the 

MapReduce paradigm could be used to parallelize the analysis of syncrophasor data. In this vein, the project is a 

success. The multicore run-times demonstrated here are indicative that large sets of PMU data from a large scale 

power grid (tens of thousands of buses) can be sorted and processed on the order of seconds, fast enough to allow for 

real-time, or near real-time, detection of anomalies. Second, it is possible that the data collected from the PMUs were 

insufficient to leverage the full power of the Linux system. It is suspected that with larger datasets, better speedups 

will be achieved. This, along with further optimization of the algorithm, will be the focus of future work. 
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Figure 8. A mock-up of the GUI. 

 

 

4. Conclusion and Future Work 

 
From the presented results, it can be concluded that the implementation of the proposed anomaly detection algorithm 

in a real smart-grid environment is feasible with today’s computing capabilities. While the testbed is a 1000:1 scale 

emulation, the scripts and programs created to analyze data is scalable and capable of handling larger sums of data with 

more grueling requirements. From building this system, the benefits of working with MapReduce and other parallel 

computing frameworks are apparent for the implementation of any large scale data analysis.    

   Two anomaly detection algorithms were presented. The first enables the real-time detection of constraint-based 

anomalies. The second enables temporal-based anomalies to be detected in parallel. While the implementations of these 

algorithms could stand improvement, the results lend credence to the claim that parallel computing can enable the real-

time detection of power grid anomalies. Future work will concentrate on code optimization, running larger datasets for 

analysis, and adding more thorough analysis into the algorithm (e.g. state estimation, voltage stability assessment, etc.).  

   Future improvement to the GUI include options that will allow grid administrators to toggle between manually 

adjusting the grid and automatically having the grid regulate itself. This requires us to address how a TCP connection 

can be made from the PMUs through the GUI itself, in order to independently control opening and closing the breakers. 

Furthermore, displaying historical data and alerting the user of potentially problematic trends over a period of time will 

assist grid administrators in assessing the health of the grid. In the future, grid operators should be able to view grid 

information on a portable device such as a smartphone or tablet. A mockup is shown in Figure 8. Furthermore, work 

needs to be completed in order to enable to GUI to properly display anomaly detection warnings. 

   While the program is optimized for speed, in reality there are many other factors to consider as well. Within recent 

years, several actors – both independent and government sponsored – have targeted rival countries’ power grids in 

attempts to both disrupt quality-of-life and obtain military advantages. As such, any software tied to a power grid needs 

to feature robust intrusion detection mechanisms and must avoid unsecure protocols. Improving the security of the 

proposed approach represents another avenue of future work.  
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