
Proceedings of The National Conference 

On Undergraduate Research (NCUR) 2016 

University of North Carolina Asheville 

Asheville, North Carolina 

April 7-9, 2016 

 

Exploring the Oriented Graceful Labeling Conjecture on Lobster Trees 

 

Timothy Nosco, Lisa Jones, Jakub Smola, Jessie Lass 

Department of Electrical Engineering and Computer Science 

United States Military Academy 

West Point, New York 10997 USA 

 

Faculty Advisors: Dr. Jocelyn Bell, Dr. William Pulleyblank, Dr. Suzanne J. Matthews  

and Dr. Christopher Okasaki 
 

Abstract 

 
Introduced in 1967 by Rosa and further explored by Ringel and Kotzig, the famously unsolved graceful tree labeling 

conjecture (GTL) is a labeling problem in graph theory which proposes that for any tree with m+1 vertices, each vertex 

can be assigned a distinct label from 0 to m such that if we assign to each edge the absolute value of the difference of 

its adjacent vertices, then every edge is assigned a distinct value between 1 and m. This conjecture has been proven to 

hold for certain families of trees, but no proof for the general conjecture has been found. In 2015, Bell et al. presented 

a stricter version of GTL known as the oriented graceful tree labeling conjecture (OTL), imposing the additional 

constraint that for every vertex v in a tree T, the labels of vertices adjacent to v are either all strictly less than the label 

of v, or all strictly greater than the label of v. This paper addresses the mathematical community’s desire for a 

computational toolset to assist in the exploration of these graph labeling conjectures, particularly on lobster tree 

topologies. Using Python, parallel computing, and Microsoft’s Z3 SMT solver, we are able to verify the conjecture 

for lobster trees up to 19 vertices. We plan to continue developing this toolset and eventually make it available to the 

public as an open-source project. 

 

Keywords: graceful labeling, parallel computing, SMT solvers 

 

 

1. Introduction 

 
Popularized in 1963 by Ringel and Kotzig [1], the famously unsolved graceful tree labeling conjecture is a labeling 

problem in graph theory which proposes that for any tree with m+1 vertices, each vertex can be assigned a distinct 

label from 0 to m such that if each edge label represents the absolute value of the difference of its adjacent vertices, 

then every edge is assigned a distinct value between 1 and m. This conjecture has been proven to hold for certain 

families of trees, but no proof for the general conjecture has been found.  

   
Figure 1. Example caterpillar tree with 10 vertices.                              Figure 2. Example lobster tree with 15 vertices. 

Rosa [2] proved in 1967 that all caterpillar trees admit a graceful labeling. Caterpillar trees consist of a single path, 

to which any number of leaf nodes can be connected (Figure 1).  In this paper, we focus on lobster trees. In a lobster 



1304 
 

tree, the removal of all the leaf nodes causes the tree to become a caterpillar tree (Figure 2). Note that removing the 

leaves from the bottom level of Figure 2 yields the caterpillar tree in Figure 1. 

 
Figure 3. A gracefully labeled oriented tree with 14 vertices. 

 

In 2008, Morgan [3] proved that all lobsters with perfect matchings are graceful. Many mathematicians believe that 

this presents strong evidence that an inductive proof that all lobsters can be gracefully labeled exists. In 2015, Bell et 

al. [4] presented a stricter version of the graceful tree labeling conjecture known as the oriented graceful tree labeling 

conjecture, imposing the additional constraint that for every vertex v in a tree T, the labels of vertices adjacent to v are 

either all strictly less than the label of v, or all strictly greater than the label of v. Figure 3 shows an oriented tree with 

14 vertices and a valid graceful labeling. Notice that all vertices are uniquely labeled in white and all edges are 

uniquely labeled in black.. Furthermore, each edge’s label is the absolute difference of the labels of its two vertices, 

and each vertex satisfies the oriented constraint.  

This paper describes the first large-scale computational exploration of the oriented graceful tree labeling conjecture. 

It presents an algorithm that hybridizes an open-source SMT solver [5] with the Message Passing Interface library [6] 

to simultaneously prove the conjecture on multiple lobster trees. The paper’s contributions also include a novel 

enumeration algorithm for lobster trees, as well as random tree generation capabilities that allow the user to test trees 

of a particular family or order. Using this framework, we were able to prove the conjecture for lobster trees up to 19 

nodes. We plan to open-source our software suite, and believe that it provides a useful framework for mathematicians 

to rapidly prototype and assess graph labeling algorithms. 

The rest of the paper is organized as follows. Section 2 of this paper outlines the core algorithms of our approach. 

Section 3 describes benchmarking results. Section 4 concludes the paper. 

 

 

2. Methodology 

 
The goal of this paper is to prove that the oriented graceful labeling conjecture holds for all lobster trees with V vertices 

(order V). Accomplishing this requires the completion of three subtasks. The first is a lobster generation algorithm, 

which generates all lobster trees of order V. The second is an SMT solver with programmed constraints that determines 

if an individual tree has a valid labeling. Lastly, a parallel algorithm that labels multiple trees simultaneously. The 

subsections below discuss each of these subcomponents in detail. 

 

2.1. Lobster Generation 
 

Before testing whether all lobsters of a particular order admit a graceful labeling, the program must generate those 

lobsters.  This section discusses the necessary representation of lobster trees,  the problem of isomorphisms, and finally 

the primary cases in the generation algorithm. 

   A lobster tree is a path with any number of subtrees of height 1 or 2 attached to each vertex in the path.  In this 

paper, trees are represented as a list of tuples of integers.  The outer list represents the path.  The inner tuples represent 

the subtrees attached to the corresponding vertex in the path, where each subtree is represented by its size.  For 

example, the lobster in Figure 1b could be represented as 

 

 



1305 
 

 

[ (3), ( ), (2,1), ( ), (1,3) ] 
 

 

It is very easy to write a naïve recursive algorithm to generate lobsters in this representation.  The problem is that this 

naïve algorithm will generate many lobsters that are isomorphic to each other, which is not ideal. There are three 

sources of ambiguity in this representation that would allow isomorphisms to happen if we are not careful. 

 

Ambiguity #1: Changing the order of the subtrees attached to a particular node does not result in a different tree.  For 

example, these four lobsters are isomorphic: 

 

 

[ (3), ( ), (2,1), ( ), (1,3) ] 

[ (3), ( ), (2,1), ( ), (3,1) ] 

[ (3), ( ), (1,2), ( ), (1,3) ] 

[ (3), ( ), (1,2), ( ), (3,1) ] 
 

 

To prevent this ambiguity, the algorithm sorts every inner tuple from largest to smallest, as shown in the bolded 

lobster. Note that, especially when sorted in this way, the inner tuples form integer partitions.  The integer partitions 

of a number P are the (sorted) tuples of positive integers that sum to P.  For example, there are 5 partitions of P=4: 

(4), (3,1), (2,2), (2,1,1), and (1,1,1,1).  Standard algorithms exist for creating these partitions [7]. 

 

Ambiguity #2: Presenting a path from left-to-right or from right-to-left does not result in a different tree.  For example, 

these two lobsters are isomorphic: 

 

 

[ (3), ( ), (2,1), ( ), (3,1) ] 

[ (3,1), ( ), (2,1), ( ), (3) ] 
 

 

To prevent this ambiguity, the algorithm ensures that, if descendents of the two end vertices of the path are not 

isomorphic, then the outer list is oriented so that the “larger” end vertex comes first, as shown in the bolded lobster. 

Define larger by comparing the two inner tuples as follows: 

 

 If the sums of the two inner tuples are different, then the tuple with the greater sum is larger. So (3,1) is larger 

than (3), and (5) is larger than (2,1,1). 

 If the sums are equal, but the two inner tuples are different, then they are compared lexicographically by 

finding the first position at which they differ.  The one with the greater integer in that position is larger. So 

(3,1) is larger than (2,2) and (4,2) is larger than (4,1,1). 

 Otherwise, the two inner tuples are identical and neither is larger. 

 

  



1306 
 

Consider these isomorphic not-quite palindromes: 

 

 

[ (3,1), ( ), (2,1), (4), ( ), (3,1) ] 

[ (3,1), ( ), (4), (2,1), ( ), (3,1) ] 

 

 

In such situations, the algorithm works from both ends toward the middle until finding the first mismatch, in this case 

between (2,1) and (4), and insists that the list is oriented so that the larger of the mismatched tuples comes before the 

smaller, as shown in the bolded lobster. 

   Notice that a true palindrome is identical in both orientations and so does not need a special rule to prevent 

isomorphisms. 

 

Ambiguity #3: For a given lobster, different sets of vertices can form the path.  For example, consider a lobster that 

is a simple path of 6 vertices.  It could be represented as 

 

 

[ ( ), ( ), ( ), ( ), ( ), ( ) ] 

[ (1), ( ), ( ), ( ), ( ) ] 

[ (2), ( ), ( ), ( ) ] 

… 

[ (2), (2) ] 

 
 

Essentially, for vertices at or adjacent to an end of the path, there can be ambiguity about whether that vertex should 

be considered to be on the path, or a child of its neighbor. 

   To disambiguate, the algorithm enforces that both end vertices of the path must have a subtree of size 2 or greater, 

as shown in the bolded lobster.  With this rule, the choice of path for a lobster is exactly and unambiguously those 

vertices that remain after removing all the leaves (vertices of degree 1), and then removing all the new leaves.  This 

paper refers to this unambiguous path as the spine.  The length of the spine is 4 less than the length of the longest path 

in the lobster.  Note that degenerate lobsters—those whose longest path is length 4 or less—do not have a spine, and 

can easily be handled on an ad hoc basis. 

   The lobster generation algorithm proceeds as follows.  First, produce degenerate lobsters.  For simplicity, the 

following description is phrased in terms of making choices as if the algorithm were creating a single arbitrary lobster.  

The real algorithm recursively makes all of those choices in all possible ways. 

   Let V represent the total number of desired vertices.  First, choose a spine length S between 1 and V-4.  (The -4 

ensures the end vertices on the spine both have at least two descendants.)  Create the outer list of length S. 

Create left and right markers in the first and last positions of the list, respectively. Initialize R, the number of remaining 

vertices, to V-S.  Also initialize a flag variable PALINDROME to true. 

 

Repeat the following steps until done: 

 

 If the left marker and right marker are equal, there is only one position remaining. Choose an integer partition 

of R and place it in the spine list at that position.  Return the spine list as the next lobster. 

o If this is the first pass, require the integer partition to contain at least 2 entries of 2 or greater. 

 If the left and right markers are one apart, there are only two positions remaining. Choose a number k1 between 

0 and R, and let k2 = R-k1. Choose an integer partition of k1 and place it in the position of the left marker.  

Choose an integer partition of k2 and place it in the position of the right marker. Return the spine list as the 

next lobster. 

 

o If PALINDROME is true, require the left partition to be at least as large as the right partition. 

o If this is the first pass, require both partitions to contain at least 1 entry of 2 or greater. 

 



1307 
 

 Otherwise, choose a number k1 between 0 and R, and a number k2 between 0 and R-k1.  Choose an integer 

partition of k1 and place it in the position of the left marker.  Choose an integer partition of k2 and place it in 

the position of the right marker. Subtract k1 and k2 from R.  Move the left and right markers one position 

toward the middle.  

 

o If PALINDROME is true, require the left partition to be at least as large as the right partition. If the 

left partition is larger, set PALINDROME to false. 

o If this is the first pass, make sure that both partitions contain at least 1 entry of 2 or greater. 

 

2.2. Satisfiability Modulo Theories  
 
As the order of lobster trees increases, so does the complexity of labeling the trees. Therefore, in the absence of an 

inductive proof that all lobsters admit a graceful labeling—and, consequently, an iterative algorithm for gracefully 

labeling lobsters—an approach utilizing heuristics to efficiently search for a label is required. However, the approach 

must also ensure that all possible labels were tested if necessary. This is exactly the capability offered by constraint 

programming solvers such as Satisfiability Modulo Theories (SMT) solvers. 

 

 

 

Figure 7. Overview of graceful labeling with SMT Solver 

 

   An SMT solver takes a formula in first-order logic and determines whether that formula can be satisfied. For graceful 

labeling, each given tree is translated into a formula that models the constraints for the (oriented) graceful labeling of 

that tree. The formula is then sent to the SMT solver, which eventually determines that yes, the tree can be labeled, or 

that no labeling exists. Figure 7 gives an overview of this process.  

   This paper uses Z3 [5], Microsoft’s open-source SMT solver. In addition to being open-source, Z3 is capable of 

running on multiple threads, allowing the leverage of a shared memory architecture. When sending the formula for a 

particular tree to Z3, its multicore functionality enables it to search the space of valid labelings for that tree 

concurrently. If multiple trees are assigned to the solver, the trees are assessed sequentially. 

    The use of a constraint solver also increases the applicability of the work to solving other types of problems. It is 

for this reason that a constraint solver was chosen rather than a custom algorithm for graceful labeling. To use this 

framework for other types of problems, it is sufficient to reprogram the SMT solver with new constraints.   

 

2.3. Parallel Algorithm 

 
As the number of vertices (order) in the lobster tree increases, the number of total lobster trees (lobster space) grows 

exponentially. In addition, the complexity of labeling a tree increases with the number of vertices. Lobster space 

cannot be searched heuristically; proving the conjecture for a particular order V requires showing that all lobster trees 

with V vertices have a valid labeling. Exhaustively labeling each tree in lobster space quickly becomes intractable, 

even with the use of a multicore constraint solver such as Z3. To speed up labeling multiple trees, a wrapper is created 

to interface Z3 with the Message Passing Interface (MPI). This enables the division of  the lobsters in that space evenly 

between multiple nodes. This parallel approach enables us to exhaustively test the space of possible lobster trees with 

larger number of vertices.  



1308 
 

 

Figure 8. Overview Parallel Approach. 

   Figure 8 gives an overview of the parallel approach. The program first generates all lobster trees with V vertices on 

the master node and outputs it to a single file. This is a serial approach; experimental benchmarks (not shown) indicate 

that the lobster generation process is very fast, and that the bulk of computation time lies with the labeling process. 

Next, the program splits the file into n equally-sized chunks, where n is the number of worker nodes.Note that files 

are written to a distributed file system that is shared between all the nodes. Each worker node then runs Z3 on its 

assigned chunk of trees. In the example above, there are n=3 worker nodes. The execution of Z3 is highlighted in 

orange (view electronically). Each node loops sequentially through the trees assigned to it, attempting to label each 

tree. If a valid labeling is found for every tree assigned to a worker, the worker node sends a message to the master 

node indicating that it has successfully completed labeling all trees in its assigned chunk. 

If a label is not found for a particular tree, the tree is stored, and the node returns that it has failed to label a tree. At 

this point, the MPI process is terminated, since the program has identified a tree that cannot be labeled. This case has 

never happened in our testing, and would in fact disprove the (oriented) graceful labeling conjecture! 

 

 

3. Experimental Design and Results  
 

 Benchmarks were performed on Lightning [8], a Cray XC30 high performance computing cluster hosted out of the 

Air Force Research Lab D.O.D. Supercomputing Research Center (AFRL DSRC). The Lightning cluster consists of 

2,370 compute nodes, each with 24 Intel Xeon E5-2697v2 processors at 2.7Ghz, 64 GB of RAM and over 1TB of 

available user hard disk space. The cluster uses the Lustre distributed file system. Portable Batch System (PBS) [9] is 

employed for job scheduling. Access was granted to the standard queue, a relatively low-priority queue for the system. 

This limited our ability to schedule large numbers of nodes for jobs. We ended up using approximately 150,000 

compute hours over the course of our project.  

 

Table 1. Run time (seconds) corresponding to scalability test. 

 

  Number of Compute Nodes 

Order (V) 1 16 32 64 128 

12 106.70 12.82 10.85 11.52 12.74 

13 436.76 52.16 29.84 26.31 23.58 

14 2803.83 274.70 218.29 137.19 124.28 

15 14129.50 1566.28 888.59 725.81 600.68 

 

 

 

 

 



1309 
 

 

3.1. Scalability Analysis 

 
First, we study the scalability of our approach as the number of compute nodes is increased. Table 1 shows the run-

time of the framework for labeling all possible lobster trees with 12 to 15 vertices, and varying the number of compute 

nodes from 1 to 128. Note that in the case of a single compute node, Z3 is still running in multithreaded form; it is 

however labeling each tree sequentially. For 1 compute node, the run time increases from 106.70 seconds to 14,129 

seconds as we vary the number of vertices in each tree from 12 to 15. In other words, it takes Z3 132 times longer to 

label every tree with 15 vertices versus every tree with 12 vertices, a combined effect of there being more trees of the 

larger size (6739 vs 532) and each individual larger tree taking longer to label. Increasing the number of nodes has a 

clear effect on run time. When run on 128 nodes, the program is able to exhaustively determine labels for all lobster 

trees of order 15 in 600.68 seconds, approximately 10 minutes.   

   Figure 9 shows the speedup of the framework compared to single-node Z3 execution. For lobster trees with 12 

vertices, the use of 32 nodes proved to be an inefficient use of resources. In this case, the process of serially generating 

all the lobster trees and splitting the files consumed more time than the actual time needed to label the trees on 128 

nodes. As the lobster order increases however, the associated tree space increases exponentially. For larger orders (13-

15) the use of 32 and 64 nodes greatly improved the run-time of our labeling approach. For example, for 1obster space 

of order 14, the program achieved a speedup of 12.8 on 32 nodes and a speedup of 20.43 on 64 nodes. For lobster 

space of order 15, the program achieved speedups of 15.9 and 19.4 on 32 and 64 nodes, respectively. Note that using 

128 nodes started to demonstrate diminishing returns. For lobster space of order 14, the speedup is 21.98, which 

increases to 23.52 for lobster space of order 15.  

 
Figure 9. Speed up of our scalability test. 

3.2. Race to the greatest V 
 

We next focused on trying to prove the ordered graceful labeling conjecture for larger lobster spaces, with the goal of 

trying to prove the conjecture for the largest order possible. To date, we have successfully proven the conjecture for 

lobsters of order 19. Based on the results of the scalability analysis, the next set of experiments were run on 32 nodes. 

This decision was made because it yielded fairly good speedup and resulted in quicker job scheduling on the cluster. 

We referred to this process as the “race to the greatest V”. 

   Table 2 enumerates our experimental results. We were able to prove the conjecture for lobster spaces up to 18 with 

32 nodes. There are 89,779 lobsters of order 18. While the space of trees was equally distributed between compute 

nodes, certain trees proved more difficult to label than others. For lobster trees of order 18, it took each node roughly 

4.5 hours to label its share of trees. However, it took one node 24 hours, suggesting that a subset of trees in that file 

were taking an especially long time to label. This became more evident when we increased the number of vertices to 

19. For lobster trees of order 19, the job timed out on 32 compute nodes. The remaining trees were rescheduled across 

64 compute nodes; all but one node were able to label their assigned trees in 10 hours. The last node timed out after 

40 hours. This process was repeated until a single tree that took Z3 more than 24 hours to label was identified.  



1310 
 

 

Table 2. Race to greatest V. 

 

Order (V) Number of 

Lobsters (T) 

Compute 

Nodes (n) 

Avg Time 

Per Node 

Time For 

Slowest Node 

16 15,955 32 30 minutes 1.5 hours 

17 37,776 32 1 hour 4 hours 

18 89,779 32 4.5 hours 24 hours 

19 213,381 64 10 hours >40 hours 

 

   We tried to label this same tree using a different type of solver called CPLEX [10]. Unlike Z3 and SMT solvers that 

use constraint programming, CPLEX uses an integer programming paradigm to solve optimization problems. In this 

case, it took less than a second to label the tree with CPLEX. We caution the reader that this does not necessarily 

indicate that CPLEX is “better” than Z3 at producing graceful labelings. Rather, we conjecture that the heuristics that 

CPLEX uses are more suited to features of the representation and the topology of this tree. Likewise, Z3 may be a 

more suitable solver than CPLEX for other lobster topologies.    

 

 

4. Conclusions and Future Work 

 
Using our framework, we were able to prove the oriented graceful conjecture for lobsters up to order 19. We plan to 

continue running our experiments to see how high an order we can exhaustively search. This process is limited by the 

availability of HPC resources and the amount of time it takes to narrow down any job time-outs to a single tree. 

  Our analysis presents several fruitful directions for future development. Although the labeling algorithm does produce 

all lobsters of a given order without isomorphism, it accomplishes this iteratively— that is, it does not leverage the fact 

that a bijection exists between ℕ and lobster trees. Because of this, the algorithm cannot generate a particular lobster 

without first producing all the lobsters that lexicographically precede it.  

   Improving the lobster generation algorithm to produce lobsters independently and by bijection is the first step toward 

improving the load balancing of the framework. As previously noted, Z3 has great difficulty labeling certain types of 

trees. Although we lack sufficient data points to specifically characterize these trees, we expect that we will find more 

examples as we attempt to label trees with higher order. Analyzing these trees should indicate a heuristic to predict 

whether Z3 will take a long time to label a particular tree. The program could then preemptively distribute these hard 

trees equitably among the compute nodes in order to reduce the total time required to determine if a valid labeling exists. 

   Another interesting investigation would be to compare the performance of different solvers (e.g. CPLEX [10], 

MiniSAT [11]) in generating oriented graceful labels for these hard trees. Since Z3 only utilizes 8 cores per compute 

node, it would be possible to spawn instances of other solvers on the same node; if Z3 did not find a label in a specified 

amount of time, the process could pass the hard tree to another solver. Alternatively, we may be able to develop 

heuristics that predict which solver is best suited to trees that have particular topological features. 

   While our work lends credence to the claim that all lobsters admit an oriented graceful labeling, we stress that our 

process has much broader applicability. Our software is modular to the extent that it is trivial to substitute any set of 

graph labeling constraints in place of orientation and gracefulness; by importing new data structures, we can utilize the 

combination of SMT solvers and high performance computing to attack any problem that can be formulated in terms 

of constraint programming. We believe that our software will be useful to mathematicians as they explore topological 

problems in the future. 

 

 

5. Acknowledgements 

 
We are sincerely grateful to the High Performance Computing Modernization Program (HPCMP) at West Point, 

especially Dr. Claire Verhulst for facilitating access to the Lightning cluster. The opinons expressed in the paper are 

those solely of the authors and do not necessarily reflect those of the U.S. Military Academy, U.S. Army, or the 

Department of Defense. 

 

 

 



1311 
 

 

6. References 
 

[1] Ringel, Gerhard. "Problem 25." Theory of Graphs and its Applications, Proc. Symposium Smolenice. Vol. 1263. 1963. 

[2] Rosa, Alexander. "On certain valuations of the vertices of a graph." Theory of Graphs (Internat. Symposium), Rome. 1966. 

[3] Morgan, David. "All lobsters with perfect matchings are graceful." Electronic Notes in Discrete Mathematics 11 (2002): 
503-508.  

[4] Bell, Jocelyn, et. al. Oriented Graceful Labeling of Trees. Preprint. 18 MAY 2016. 

[5] De Moura, Leonardo, and Nikolaj Bjørner. "Z3: An efficient SMT solver." Tools and Algorithms for the Construction and 
Analysis of Systems. Springer Berlin Heidelberg, 2008. 337-340. 

[6] Gropp, William, et al. "A high-performance, portable implementation of the MPI message passing interface 
standard." Parallel computing 22.6 (1996): 789-828. 

[7] Skiena, S. "Partitions." §2.1 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. 
Reading, MA: Addison-Wesley, pp. 51-59, 1990. 

[8] Staff. “AFRL Fires Up 1.28 Petaflop ‘Lightning’ Supercomputer”. Inside HPC. September 24, 2014. Accessed from: 
http://insidehpc.com/2014/09/afrl-unveils-one-worlds-fastest-computers/  

[9] Henderson, Robert L. "Job scheduling under the portable batch system." Job scheduling strategies for parallel processing. 
Springer Berlin Heidelberg, 1995. 

[10] CPLEX, IBM ILOG. "V12. 1: Users manual for CPLEX." International Business Machines Corporation 46.53 (2009): 157. 

[11] Sorensson, Niklas, and Niklas Een. "Minisat v1. 13-a sat solver with conflict-clause minimization." SAT 2005 (2005): 53. 

http://www.amazon.com/exec/obidos/ASIN/0521806860/ref=nosim/ericstreasuretro
http://insidehpc.com/2014/09/afrl-unveils-one-worlds-fastest-computers/

