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Abstract

Finding the optimal solution of large scale optimization problems has been problematic for researchers because their
computation is often challenging and expensive. A variety of alternative methods are proposed in the literature to make
these problems easier to solve, however, the solutions may be infeasible or suboptimal to the original problem. In this
paper, we explore the Lagrangian relaxation method and illustrate its use by applying it to the airline crew scheduling
problem which is a large scale optimization problem. We examine the feasibility of the solutions obtained by the
Lagrangian relaxation method and compare them with the optimal solution. We also propose a heuristic algorithm to
generate feasible solutions from infeasible solutions.

1 Introduction and Problem Formulation
Crew scheduling is defined as the problem of assigning a crew to a set of tasks. These problems appear in a number
of transportation contexts such as bus and rail transit, truck and rail freight transport, and freight and passenger air
transportation. The common aim of all of these is to cover all tasks while minimizing labor costs subject to a wide
variety of constraints imposed by safety regulations and labor negotiations. In this study, we use the airline crew
assignment problem (ASCP) as the constrained optimization problem to illustrate the Lagrangian relaxation method.
In the ACSP, we are charged with assigning sequences of flight legs (or flight segments) to crews consisting of pilots

and flight attendants, stationed in a particular city called a crew base. A flight leg is defined as a flight that takes off in
one city, then lands in another. A sequence of flight legs is an ordered arrangement of flight legs. A sequence of flight
legs is a feasible sequence of flight legs if it leaves from a crew base and returns to the same base. There is a set ofm
flight legs, FL = {f1, f2, . . . , fm}, and set of n number of flight sequences, Seq = {sq1, sq2, . . . , sqn}, where each
sqj = {1, 2, . . . , kj} is a feasible sequence of flight legs. Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} be the indices
sets for FL and Seq, respectively. The entries 1, 2, . . . , kj in a set sqj indicates the order of flights for sequence sqj
for some j ∈ J . Further, each sequence sqj has an associated cost cj for some j ∈ J . Let x ∈ Rn be the decision
variable defined as follows,

xj =

{
1 if the sequence sqj is selected to be scheduled
0 otherwise, for j = 1, 2, . . . , n.

The goal of ACSP is to minimize the cost of the k crew assignments that cover all flight legs where k is the number
of crew assignments to be chosen. This implies

∑
j∈J xj = k. Let the binary coefficient aij be equal to 1 if a flight

leg fi is in a given sequence sqj , otherwise aij is equal to 0. All flight legs in FL must be covered by at least one
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crew, that is,
∑

j∈J aijxj ≥ 1 for all i ∈ I . The mathematical formulation of ACSP is given below.

Minimize z =
∑
j∈J

cjxj

Subject to∑
j∈J

aijxj ≥ 1, i ∈ I

∑
j∈J

xj = k

xj ∈ {0, 1}, j ∈ J.

(1)

The model given in (1) represents a 0-1 integer programming problem, and is an extension to classical set covering
problem (SCP) with an upper bound constraint

∑
j∈J xj = k. The SCP is an NP-hard combinatorial optimization

(CO) problem [8] and the upper bound constraint makes it more difficult to solve this problem. This model requires
the explicit enumeration of all possible flight sequences. Practical problems often include factors such as labor laws,
safety regulations, and personnel availability which make the number of constraints exponential, so finding the optimal
solution using the model is difficult or impossible to do.
This issue has been the motivation for a variety of new alternative methods proposed in the literature to obtain a close

optimal solution. A well-known technique called Lagrangian relaxation is widely used to find near optimal solutions of
many CO problems [5, 6, 4, 12]. In this study we obtain the Lagrangian relaxation of model (1) and propose a heuristic
method to find a near optimal solution for ACSP.
In some situations, it is required to include additional conditions and incorporate them into model (1). There are

multiple approaches used to solve the crew scheduling problem. Column generation approaches have been successfully
implemented to solve large scale scheduling problems by repeatedly generating pairing for a given set partitioning
problem [9]. Extensions of this approach have been integrated with heuristic methods such as the heuristic tree search
method to solve the crew scheduling problem as a linear programming problem [11]. Meta-heuristic algorithms based
on Particle Swarm Optimization that is hybridized with a local search heuristic have been proposed in optimization of
crew scheduling [2]. A heuristic based genetic algorithm has been applied to optimizing medium scale airline crew
scheduling problems [3], and variable neighborhood search methods have been applied to crew pairing problems [1].
Our work provides two different models associated with ACSP based on Lagrangian relaxation of the ACSP. The

Lagrangian relaxation method is applied to linear programming problems where an easy problem to optimize is com-
plicated by certain constraints. In the Lagrangian relaxation method, these complicating constraints are added to the
objective function with an assigned Lagrangianmultiplier which serves as a penalty weight for violating the constraints.
With the relaxation of the complicating constraints, the resulting subproblem is simpler and relatively easier to solve
and requires less computational power than the linear programming formulation. This is because the Lagrangian relax-
ation expands the set of feasible solutions, so the set of feasible solutions to the original linear programming problem
are a subset of the set of feasible solutions to the relaxed problem. However, the solutions for the subproblems may
not be feasible for the original problem since some constraints are moved to the objective function, allowing them
to be violated. We analyze the relationship between the optimal solution of ACSP and the solution provided by the
relaxed model. Furthermore we investigate solutions provided by the relaxed model and provide a heuristic algorithm
to ensure their feasibility for the ACSP.
Our study is organized as follows. In Section 2, we demonstrate the Lagrangian relaxation model of (1), and discuss

the basic properties of Lagrangian relaxation. In Section 3, we illustrate the model by way of example and numerical
results. In Section 4 we provide a heuristic algorithm to obtain a feasible and approximately optimal solution to the
ACSP. In Section 5 we present our plan for future work based on the model contained herein.

2 Lagrangian Relaxation Method
We explain the Lagrangian relaxation of model (1). The idea of the Lagrangian relaxation is to include complicating
constraints as a penalty in the objective function z =

∑n
j=1 cjxj . More precisely, we introduce a Lagrangian multiplier

vector, λ = (λ1, . . . , λm) ∈ Rm
+ for each

∑
j∈J aijxj ≥ 1 constraint, and a free Lagrangian multiplier µ for the

constraint
∑

j∈J xj = k. The Lagrangian multipliers then act as a weight on the constraints. When the constraints
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and their corresponding Lagrangian multipliers are added to the objective function, if the constraint is violated then the
objective function’s value increases. With proper selection of the Lagrangian multipliers, the penalties in the objective
function deter solutions that are infeasible for the model in (1).
We implement two different Lagrangian relaxation problems, zLR1(x, λ) and zLR2(x, µ), of the integer programming

problem given in (1). In formulation 1, we penalize the set of constraints
∑

j∈J aijxj ≥ 1 and add this set of constraints
to the objective function z of the ACSP using Lagrangian multipliers λi for i ∈ I . Formulation 1 is expressed as
follows:

min zLR1 =
∑
j∈J

cjxj +
∑
i∈I

λi

(
1−

∑
j∈J

aijxj

)
subject to∑

j∈J

xj = k

xj ∈ {0, 1}, j ∈ J

λi ≥ 0, i ∈ I.

(2)

The objective function, zLR1(x, λ), is called the Lagrangian function where

zLR1(x, λ, µ) =
∑
j∈J

cjxj +
∑
i∈I

λi

(
1−

∑
j∈J

aijxj

)
. (3)

In formulation 2, we penalize the equality constraint
∑
j∈J

aijxj = k and add this constraint to the objective function

z of the ACSP using the free Lagrangian multiplier µ. Formulation 2 is expressed as follows:

min zLR2 =
∑
j∈J

cjxj + µ

(
k −

∑
j∈J

xj

)
subject to∑

j∈J

aijxj ≥ 1, i ∈ I

xj ∈ {0, 1}, j ∈ J

−∞ ≤ µ ≤ ∞.

(4)

The objective function, zLR2(x, µ), is called the Lagrangian function where

zLR2(x, λ, µ) =
∑
j∈J

cjxj + µ

(
k −

∑
j∈J

xj

)
. (5)

The Lagrangian functions given in (3) and (5) are nonlinear functions. Thus, the models in (2) and (4) are nonlinear
optimization problems. But, for a given vector λ or a given µ value, the two models in (2) and (4) can be easily solved
compared to model (1).

3 Illustrative Example
In this section we illustrate the model given in (1) and two different Lagrangian relaxation described in Section 2.
First, we consider an ACSP given in [7]. Suppose an airline company needs to assign its crews to cover all 11 of its
upcoming flights given in Table 1. The airline company has already determined the feasible flight sequences and their
associated cost. We will focus on the problem of assigning k number of crews based in San Francisco to flights listed
in the first column of Table 1, where each flight requires the same number of crew members. The other 12 columns
show the 12 feasible sequences of flights for a crew. (The numbers in each column indicate the order of the flights.)
Exactly k number of the sequences need to be chosen (one per crew) in such a way that every flight is covered. (It is
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permissible to have more than one crew on a flight, where the extra crews would fly as passengers, but union contracts
require that the extra crews would still need to be paid for their time as if they were working.) The cost of assigning
a crew to a particular sequence of flights (i.e. selecting the flight sequence) is given (in thousands of dollars) in the
bottom row of Table 1. The objective is to minimize the total cost of the k crew assignments that cover all the flights.

Table 1: Upcoming flights and feasible flight sequences with their associated costs

Flights Sq 1 Sq 2 Sq 3 Sq 4 Sq 5 Sq 6 Sq 7 Sq 8 Sq 9 Sq 10 Sq 11 Sq 12
1 SF to LA 1 0 0 1 0 0 1 0 0 1 0 0
2 SF to Den 0 1 0 0 1 0 0 1 0 0 1 0
3 SF to Sea 0 0 1 0 0 1 0 0 1 0 0 1
4 LA to Chi 0 0 0 2 0 0 2 0 3 2 0 3
5 LA to SF 2 0 0 0 0 3 0 0 0 5 5 0
6 Chi to Den 0 0 0 3 3 0 0 0 4 0 0 0
7 Chi to Sea 0 0 0 0 0 0 3 3 0 3 3 4
8 Den to SF 0 2 0 4 4 0 0 0 5 0 0 0
9 Den to Chi 0 0 0 0 2 0 0 2 0 0 2 0
10 Sea to SF 0 0 2 0 0 0 4 4 0 0 0 5
11 Sea to LA 0 0 0 0 0 2 0 0 2 4 4 2
cost ($1000’s) 2 3 4 6 7 5 7 8 9 9 8 9

The network representation for this problem is given in Figure 1. Each arc denotes a flight and the associated flight
number from Table 1.

Figure 1: Network representation of the illustrative example

Figure 2 shows the flight sequences 4, 5, 6, and 7 and the corresponding flight legs. For example, flight sequence 4
goes from SF to LA, LA to Chi, Chi to Den, and Den to SF. The ACSP formulation for this problem is
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Figure 2: Flight sequences 4, 5, 6, and 7 and the corresponding flight legs

minimize z = 2x1 + 3x2 + 4x3 + 6x4 + 7x5 + 5x6 + 7x7 + 8x8 + 9x9 + 9x10 + 8x11 + 9x12

subject to:
x1 + x4 + x7 + x10 ≥ 1 (λ1)
x2 + x5 + x8 + x11 ≥ 1 (λ2)
x3 + x6 + x9 + x12 ≥ 1 (λ3)

x4 + x7 + x9 + x10 + x12 ≥ 1 (λ4)
x1 + x6 + x10 + x11 ≥ 1 (λ5)

x4 + x5 + x9 ≥ 1 (λ6)
x7 + x8 + x10 + x11 + x12 ≥ 1 (λ7)

x2 + x4 + x5 + x9 ≥ 1 (λ8)
x5 + x8 + x11 ≥ 1 (λ9)

x3 + x7 + x8 + x12 ≥ 1 (λ10)
x6 + x9 + x9 + x10 + x11 + x12 ≥ 1 (λ11)∑

j∈J

xj = k (µ)

xj ∈ {0, 1}, for j ∈ J

Since there are 12 flight sequences for this problem, we define 12 binary variables x = (x1, x2, . . . , x12). The set
of constraints according to model (1) are given below. Let the vector λ = (λ1, λ2, . . . , λ11) and µ denote the values
of the Lagrangian multipliers that are associated with each constraint.

x1 + x4 + x7 + x10 ≥ 1 (λ1)
x2 + x5 + x8 + x11 ≥ 1 (λ2)
x3 + x6 + x9 + x12 ≥ 1 (λ3)

x4 + x7 + x9 + x10 + x12 ≥ 1 (λ4)
x1 + x6 + x10 + x11 ≥ 1 (λ5)

x4 + x5 + x9 ≥ 1 (λ6)
x7 + x8 + x10 + x11 + x12 ≥ 1 (λ7)

x2 + x4 + x5 + x9 ≥ 1 (λ8)
x5 + x8 + x11 ≥ 1 (λ9)

x3 + x7 + x8 + x12 ≥ 1 (λ10)
x6 + x9 + x9 + x10 + x11 + x12 ≥ 1 (λ11)∑

j∈J

xj = k (µ)

According to formulation 1, the corresponding Lagrangian function zLR1 is given below:
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zLR1(x, µ) = 2x1 + 3x− 2 + 4x3 + 6x4 + 7x5 + 5x6 + 7x7 + 8x8 + 9x9 + 9x10 + 8x11 + 9x12

+ λ1

(
1− (x1 + x4 + x7 + x10)

)
+ λ2

(
1− (x2 + x5 + x8 + x11)

)
+ λ3

(
1− (x3 + x6 + x9 + x12)

)
+ λ4

(
1− (x4 + x7 + x9 + x10 + x12)

)
+ λ5

(
1− (x1 + x6 + x10 + x11)

)
+ λ6

(
1− (x4 + x5 + x9)

)
+ λ7

(
1− (x7 + x8 + x10 + x11 + x12)

)
+ λ8

(
1− (x2 + x4 + x5 + x9)

)
+ λ9

(
1− (x5 + x8 + x11)

)
+ λ10

(
1− (x3 + x7 + x8 + x12)

)
+ λ11

(
1− (x6 + x9 + x9 + x10 + x11 + x12)

)
.

Thus, the formulation 1 of model (1) is given by

Minimize zLR1

Subject to∑
j∈J

xj = k

xj ∈ {0, 1}, j ∈ J.

(6)

According to formulation 2, the corresponding Lagrangian function zLR2 is given below:

zLR1(x, λ, µ) = 2x1 + 3x2 + 4x3 + 6x4 + 7x5 + 5x6 + 7x7 + 8x8 + 9x9 + 9x10 + 8x11 + 9x12 + µ

(
k −

∑
j∈J

xj

)
.

Thus, the formulation 2 of model (1) is given by

Minimize zLR2

Subject to∑
j∈J

aijxj ≥ 1

xj ∈ {0, 1}, j ∈ J.

(7)

4 Numerical Work
This section summarizes the numerical experiments using several test cases. The model given in (1) and the Lagrangian
relaxation formulations 1 and 2 were implemented in MATLAB, version R2019a [10]. Since the functions zLR1 and
zLR2 are nonlinear functions, we solved the resulting formulations using the fmincon routine ofMATLAB. This routine
finds a constrained minimum of a several variables function starting at an initial estimate using a sequential quadratic
programming (SQP) method. In order to compare the solutions provided by model (1) with relaxed solutions provided
by Lagrangian formulations, the ’intlinprog’ solver in MATLAB was used to solve the model (1). The comparison of
model (1) and the two Lagrangian formulations was conducted using different k values from the test problem given in
Section 3.
Table 2 and 3 provide the result of this analysis. Let x∗ be the optimal solution of model (1). Let x̄ and x̂ be the

solutions provided by fmincon routine for formulations 1 and 2, respectively. The values of the objective functions z
evaluated at x̄ and x̂ are shown in last two columns of Table 2.
We use Table 3 to discuss the violation of constraints under each formulation with respect to the relaxed solutions

x̄ and x̂, respectively. With formulation 1, we allow violation of coverage constraints
∑

j∈J aijxj ≥ 1 for i ∈ I and
Block 1 of Table 3 shows outcome of this analysis. For example, first row of Table 3 shows the coverage of each flight
leg (denoted by FL1, FL2,. . . , FL11) leg when k = 3 with respect to formulation 1. We observe that the solution x̄
provides at least one coverage for all flight legs except for FL6, FL8, and FL10. Thus we are missing 27.27% of flight
legs to be covered with this solution. Similarly with k = 4 and k = 5, we observe that 27.27% and 18.18% coverages
are missing with the relaxed solution x̄, respectively. Although this solution doesn’t cover all the flight legs, it satisfies
the required number of crew-assignments.

806



With formulation 2, we allow violation of coverage constraints
∑

j∈J xj = k and Block 2 of Table 3 shows outcome
of this analysis. For example, third to the last row of Table 3 shows the coverage of each flight leg is satisfied. But we
observe that the solution x̂ does not satisfy the constraint

∑
j∈J xj = k for k = 4 and k = 5. This solution provides

the coverage for each flight leg, but we are missing 1 and 2 crews with the relaxed solution x̂ when k = 4 and k = 5,
respectively.

Table 2: Optimal solution of model in (1) and solutions provided by Formulations 1 and 2

k Optimal solution x∗ Formulation 1: Relaxed solution x̄ z(x∗) z(x̄)
3 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 18 22
4 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 20 24
5 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 23 27
k Optimal solution x∗ Formulation 2: Relaxed solution x̂ z(x∗) z(x̂)
3 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 18 18
4 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 20 18
5 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 23 18

Table 3: Infeasiblity level of solutions provided by Formulations 1 and 2

Block 1 for Formulation 1
Formulation 1: Coverage Relaxed solution x̄ In-feasibility Level

k FL1 FL2 FL3 FL4 FL5 FL6 FL7 FL8 FL9 FL10 FL11
3 1 1 1 1 3 0 2 0 1 0 3 27.27%
4 4 0 0 3 2 1 2 1 0 1 1 27.27%
5 3 2 0 2 2 2 1 3 1 0 1 18.18 %

Block 2 for Formulation 2
Formulation 2: Coverage Relaxed solution x̂ In-feasibility Level

k FL1 FL2 FL3 FL4 FL5 FL6 FL7 FL8 FL9 FL10 FL11
3 1 1 1 1 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1 1 1 1 one crew is missing
5 1 1 1 1 1 1 1 1 1 1 1 two crews are missing

Figure 3 shows the comparison of the objective function z of model (1) with respect to the solutions x∗, x̄ and x̂ for
k = 2, 3, 4, respectively. We observe that z(x̂) ≤ z(x∗) ≤ z(x̄). Further, we observe that z(x∗) = z(x̂) for k = 3.
Even though z(x̂) ≤ z(x∗) for k = 4 and k = 5, x̂ is not a feasible solution for model (1).

5 Heuristic Algorithm
We make the solution x̂ of formulation 2 return to a feasible solution for model (1). First, we obtain the formula-
tion 2 of the ACSP and obtain the solution x̂ of formulation 2. Then we identify the variables that are not selected for
the solution x̂. Let the setUS denote the unselected variables. We define a preferred variable from the setUS as below:

Definition 1: A variable xj in US is preferred over the other variables in US if its cost (that is cj) is less than or
equal to all other costs associated with the variables in US.

We identify a preferred variable from US and add it to the solution x̂. Then we remove that variable from US. If
the new solution is a feasible solution for model (1) we stop the procedure. Otherwise, we continue the procedure until
we obtain a feasible solution for model (1).
We explain this procedure using the example from the previous section and the results are given in Table 4. When

k = 4 and k = 5, the set US = {1, 2, 5, 6, 7, 8, 9, 10, 12}. We need to add one variable to get a feasible solution
when k = 4 since we are missing one crew. Thus we add the variable x1 since it is the preferred variable according
to Definition 1. The cost of x1 is 2. The new solution (so called the heuristic solution) is denoted by ˆ̂x, and z(ˆ̂x) =
z(x̂) + c2 = 18 + 2 = 20. Similarly, we need to add two variables to get a feasible solution when k = 5 since we are
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Figure 3: Comparison of objective function values at solutions x∗, x̄ and x̂

missing two crews. Thus we add the variable x1 first since it is the preferred variable according to Definition 1 and
the variable x2 second since it is the preferred variable according to Definition 1. The costs of x1 and x3 are 2 and 3,
respectively. Thus z(ˆ̂x) = z(x̂) + c2 + c3 = 18 + 2 + 3 = 23. We observe that this heuristic algorithm provides the
objective values same as the optimal solution. This may not be the case in general since the heuristic algorithm is used
to return a feasible solution for model (1) that is approximately equal to the optimal solution of model (1). For larger
linear programming problems, the heuristic algorithm may return feasible, but suboptimal, solutions for model (1).

Table 4: Optimal objective values and objective values evaluated at the heuristic solution ˆ̂x

k Formulation 2: Relaxed solution x̂ z(x∗) z(x̂) z(ˆ̂x)
cost 2 3 4 6 7 5 7 8 9 9 8 9
3 1 0 0 0 1 0 0 0 0 0 0 1 18 18
4 0 0 1 1 0 0 0 0 0 0 1 0 20 18 20
5 0 0 1 1 0 0 0 0 0 0 1 0 23 18 23

6 Discussion and Future Work
In this paper, we explored two formulations of the ACSP as Lagrangian relaxation problems. We proposed a heuristic
algorithm to tackle the problem of infeasible solutions being generated by the Lagrangian relaxation of the ACSP by
transforming infeasible solutions provided by the second Lagrangian relaxation formulation into feasible solutions for
the ACSP. Computational results based on a small data set show that our heuristic algorithm works well and provides
the optimal solution for the ACSP.
Our future study involves searching for a real data set to apply the Lagrangian relaxation and our heuristic algorithm

to and test the optimality of our methods. Furthermore, we will investigate advanced searching methods to improve
our current heuristic algorithm.
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