
Proceedings of The National Conference

 On Undergraduate Research (NCUR) 2018

University of Central Oklahoma

Edmond, Oklahoma

April 5-7, 2018

Brigham Young University Speeches Popularity Predictor

Andrew Henrichsen, Ben Jafek, Jacob O’Bryant, McKell Stauffer

Brigham Young University

Provo, UT 84602

Faculty Advisor: Dr. Tyler Jarvis

Abstract

Natural language processing is currently an active area of research in machine learning. A particular subgroup of

natural language processing strives to predict the “popularity” of a given text. Brigham Young University (BYU)

maintains an archive of speeches that are given weekly on campus. We extracted a variety of features from the

speeches and ran several machine learning models to predict which talks were popular (according to page views). All

the models performed better than the baseline, but the J48 decision tree was the most effective. We did feature

reduction using a wrapper algorithm, but this didn’t improve the overall performance of our models. We discovered

which features were most helpful by examining the decision tree’s output.

Keywords: natural language processing, decision tree, machine learning

1. Introduction

Every Tuesday morning at Brigham Young University, a speaker is invited to deliver an address to the university

body. Their speeches are often religious in nature, but other topics range from athletics to chemistry. Over 2,400 of

these speeches delivered from 1946 to the present have been archived on the university-sponsored website

speeches.byu.edu. But many of the older speeches have not yet been put on the website, as they have yet to be edited.

The editing process (e.g. the verification of sources, grammar fixes, and inclusion of visual supplements) could take

a substantial amount of time. It is therefore important to the team that edits these speeches that the public would want

to read them. For this purpose (and to be able to choose which speeches should be featured on the BYU speeches

website and social media accounts), we decided to build a “popularity” predictor (a machine learning model to predict

the number of page views that a speech would receive).

 We decided to implement several different predictors, each created with a different machine learning algorithm.

Particularly, we decided to focus on a Bayesian network, a J48 decision tree, a multi-layered perceptron, and a naive

Bayes classifier. In this paper, we will compare these models using several different evaluation metrics. Additionally,

we will attempt to improve the models’ performance using feature selection. Our goal is to find a model that can be

used for popularity prediction.

 The outline of the paper is as follows: Section 2 will briefly explore past research into text popularity prediction.

Section 3 will expound upon our methods. Specifically, it will discuss our data collection, cleaning and feature

engineering. Additionally, it will introduce our training and feature selection models and their associated evaluation

metrics. Section 4 will present and analyze our results. We will conclude in Section 5.

2. Related Work

Natural language processing is a vast field of research, full of myriad applications. In particular, we will focus this

section on predicting the popularity of a given text. Several very different approaches have been taken to solve this

907

problem. Zhang et al. propose a novel model which they name an “information diffusion model” to predict the

popularity of events in microblogging (e.g. Tweets and Facebook posts) in the future1. Their model uses a dynamical

system and context clues to model the spread of a microblog event. This model is similar to ours in the fact that the

main features come from the text itself, and from information about the blogger/speaker.

 More recently, researchers have been using machine learning algorithms to predict popularity. Bandari, Asur and

Huberman used regression and different classification algorithms to predict the popularity of certain news stories in

social media2. Using both linear and support vector machine regression, they found R2
 values around 0.33. So the

regression models were effective enough to explain a significant amount of the variability of the data, but not fully.

For the classification methods, they decided to focus on bagging, decision trees, support vector machines and naive

Bayes. They found all to have high accuracies, with the highest being bagging at 83.9% followed closely by decision

trees. This study is very similar to our own in the fact that it uses machine learning algorithms to solve the problem.

 These two methods (dynamical systems and machine learning models) have been the main ways to study text

popularity prediction in the past. We hope to complement the research that has already been done, by finding additional

useful features and effective machine learning models.

3. Methods

3.1 Data Collection

Our data had several facets to it and was collected in several different ways. First, we scraped all of the speeches from

speeches.byu.edu which had been viewed by at least 1 person in the last 18 months. We then created a useful dataset

by extracting features from each speech (to see a list of features, please refer to Table 1). Additionally, we were

generously given the Google Analytics data for all of the web pages of speeches.byu.edu from the BYU speeches

team. From this data, we were most interested in keeping the organic page views for each web page (page views that

did not come from social media links). This is because page views from social media links could become popular

because an influential person shared the link, not because of the intrinsic properties of the speech.

 We were particularly interested in developing an understanding of the features that were likely to lead to a high

page view count. This understanding would allow the developers and editors who maintain the website to make

informed proactive decisions about which speeches to advertise. This university-sponsored archive is very popular

among its target audience, so the speeches which have a high page view count are culturally known. The most

successful advertised speeches are those which contain desirable content but are overlooked by the public. Thus, we

wanted to sort out those speeches which had a high predicted pageview count, but low ground-truth page view count.

This false positive would suggest that the speech could become popular if advertised correctly. Thus, our model need

not be perfect, but must err heavily on the side of outputting too many false positives rather than false negatives.

 We stored our data in a SQLite database. We created a Python script to automatically check the database and

compute only the missing features. This allowed us to incrementally add features without having to recompute the

entire feature set. Finally, we exported the data from our database to a CSV file.

3.2 Feature Engineering

We engineered 23 features from our data, which can be seen in Table 1. In this section, we will detail how we

engineered the least-obvious of these features. We calculated gender by extracting the speaker’s first name from the

URL associated with the talk. We obtained a list of baby names from the US Social Security database3, with the

number of males and females that have been given that name since 1880 in the United States. Thus, for each speaker’s

name, we classified it by the gender ratio (number of males over number of females). When the name was not in the

list, the value “unknown” was put in as the gender value. For a few of these features, we classified them by hand (e.g.

we classified Elder Lynn G. Robbins as male, as his name was classified as female on the list). In addition, some of

the speeches were delivered and archived as a couple (e.g. Jeffrey and Patricia Holland’s Some Things We Have

Learned — Together). Consequently, we labeled the gender of these speeches’ authors as “combo”.

 We calculated the polarity, subjectivity, and Flesch reading ease of the data using the natural language processing

Python package Textblob4. The Flesch reading ease is a measure of the readability of a text as a function of average

word length and average sentence length; it is calculated as

908

 The references for the scriptures were found looking for book names preceding scripture citations in the text (e.g.

the word “Genesis” immediately before a number such as 36:9 would imply that the scripture is an Old Testament

reference). We determined if a reference was a scripture by looking at the format of the source reference. Specifically,

the RegEx command searched for patterns of the form “Name ##:##”. For authority mentions, we looked for the

following phrases: “Prophet”, “Elder”, “President”, and “of the Quorum of the Twelve”.

 For our output class, we created a feature called “popular.” If the number of page views for a talk was in the 80th

percentile or above, we classified it as popular. We originally looked at page views divided by days elapsed, since we

thought that older talks would be favored to have more page views simply due to being available for more time. But

we found that this method heavily skewed popularity in favor of recent talks, so we changed our output label to

correspond with just the number of page views. We realize that this could add an amount of bias into our label, which

could be fixed in future work. A better label might be based on the number of page views received in the first k months

after the speech was published on the website.

3.3 Data Cleaning

As we created our own features, the only unknown or missing data arose with the gender feature. We decided to leave

“Unknown” as a possible category for the gender classification, with 82 speeches falling into this category. We also

had to deal with duplicate speeches, as often multiple URLs arise for each webpage as the result of programmer

inconsistency (e.g. /talks/jarvis-tyler-j thats-light-gets/ v. /talks/tylerj-jarvis thats-light-gets/). Consequently, we had

to identify and merge these speeches, summing their page view counts. Our final dataset had 1,516 different speeches.

As can be seen in Table 1, the range of many of the features varied. We consequently decided to normalize each of

our features.

3.4 Models

For our models, we decided to use a J48 decision tree, multilayer perceptron, Bayesian network, and a naive Bayes

classifier. For each of these, we used the implementation found in the data mining softwareWeka. For our J48 decision

tree, we set the pruning confidence to 0.25 and the minimum instances per leaf to 2. For our multi-layered perceptron

we chose a learning rate of 0.3, a momentum of 0.2 (used in backpropagation), no early stopping via a validation set,

a seed of 0 into the random number generator, the number of nodes in each hidden layer to be

we trained the models for 500 epochs. For the Bayesian network, we decided to set the maximum number of parents

to be 1, and the descendant population size to 0.5. Additionally, we decided to use a Bayes score, K2 search method,

and a simple estimator, while not using the ADTree data structure. Finally, we used no special parameters for our

naive Bayes implementation.

3.5 Evaluation

As stated above, the predicted uses for this model will be (1) deciding which speeches to professionally edit, and (2)

deciding which speeches to highlight on the Speeches site or its social media pages. Thus, we are much more interested

in avoiding Type 1 errors — we want the editors to be confident that if the model suggests highlighting a speech, then

that speech will be successful. We are less concerned about popular speeches being misclassified as not popular as

long as enough speeches are correctly classified as popular so that the speeches team can find enough worthwhile

909

speeches to focus their resources on. In short, we value precision over recall. The standard F1 score given by

weights both precision and recall equally. Since we value precision over recall, we decided to use the more general Fß

score defined by

which gives ß times as much weight to recall as precision. Specifically, we use the F0.2 score (recall that 20% of our

talks are labeled as popular.). If we predict every talk as popular, the F0.2 score would be approximately 0.206. This

is our baseline. (If we predict every talk as not popular, then the F0.2 score would be
0

0
 which we define as 0).

 Also note that classification accuracy is an unsuitable evaluation metric for this application. For example, if we

predict every talk as not popular, classification accuracy would be 80%. However, a model with a lower classification

accuracy could easily have a higher F0.2 score.

Table 1: This table contains a list of all of our features, along with their descriptions. It also contains the average

values for each feature, including when they are classified as popular (within the top 20% of page views) or unpopular.

910

3.6 Feature Selection

After evaluating our models using the F0.2 score, we did feature selection to see if reducing the number of features

could improve performance. We used two feature selection algorithms.

 First, we used a wrapper algorithm to find an optimal subset of features. The algorithm started with no features and

progressively added the features that most improved the F1 score.1 For each subset of the features, the F1 score was

calculated using a J48 decision tree on the entire training dataset.

 Second, we ran the same wrapper algorithm but using 10-fold cross-validation. In this case, the wrapper algorithm

generated 10 optimal feature subsets, each time using 90% of the data for training and the other 10% for validation.

The output was the number of times each feature was included in one of the 10 optimal subsets. We combined this

into a final feature subset by choosing only features that were included in at least 5 of the optimal subsets.

Table 2: This table contains the results for our models run on all of the features.

Table 3: this table contains the results for models run on only the selected features from the wrapper algorithm.

4. Results

We first tested our models with all of the features. Our results are summarized in Table 2. The table includes a variety

of different measures of success, to more completely compare the models. Notice that different models excel according

to different measures. For our purposes, we are most interested in the F0.2 score, so the best-performing model on the

full feature set was the J48 decision tree. Although its recall is more than 0.1 less than the recall of the naive Bayes

model, its superior precision contributes more to the F0.2 score. If we were more interested in recall, the naive Bayes

would be considerably better. If we were solely interested in accuracy and RMSE, then the Bayes net would be the

best model. All of the models attained an F0.2 score greater than 0.206, the baseline.

 The optimal feature subset that the wrapper algorithm generated when running on the full training set was polarity,

subjectivity, OT ref, BOM ref, Pearl of Great Price ref, all scripture count, authority mentions, word quantity, first

person pronouns, percent in quotes, days since delivery, and year given. Table 3 shows the results when running the

models on this subset. The 10-fold cross validation wrapper generated the subset polarity, subjectivity, OT ref, D&C

ref, Pearl of Great Price ref, all scripture count, authority mentions, we-to-you ratio, first person pronouns, percent in

quotes, days since delivery, name search results, month given, and year given. The results for this subset are given in

Table 4. It is of note that the features that were most significant in both algorithms were: polarity, subjectivity, OT

ref, all scripture count, authority mentions, first person pronouns, percent in quotes, days since delivery, and year

given.

 Notice that the first feature subset gives better precision in every case, at the expense of all of the other measures.

We conjecture that this is because this subset is taken from a single run of the wrapper algorithm and thus retains

features which “work well together,” i.e. they partition the information space well. The second feature subset is an

aggregation of features from multiple subsets, so they aren’t as cohesive. Although the 10-fold cross validation reaches

911

a peak accuracy of 78.89% and RMSE of 0.225 for the Bayesian network model, its precision of only 0.046 penalizes

its F0.2 score too much for it to be considered a useful model for this application. In fact, the F0.2 score for each model

when running on the second subset was less than 0.206, our baseline measure.

 If we compare Tables 2 and 3, we can see that feature selection increased the J48 decision tree’s precision slightly;

however, the F0.2 score decreased because recall was significantly reduced. The only model that actually benefited

from feature selection was the multi-layered perceptron, but this model still didn’t perform as well as either the

Bayesian network or the J48 decision tree.

 The model with the highest F0.2 score overall was the J48 decision tree when trained on all features, so this is the

model that we will present to the BYU speeches team. It is helpful that the decision tree was the most accurate, because

it is also the most intelligible. In the decision tree that was generated, the three most important features were talking

speed, word count, and year given, in that order. For example, our model predicts that if the speaker spoke more than

0.08 words per second, and fewer than 1,601 words in the year 2003 or later, then the speech would not be popular.

Table 4: These are our results for the different models using the selected features from the 10-fold cross-validation.

5. Conclusion

We found that the J48 decision tree was able to achieve the highest F0.2 score, at 0.363. This is considerably higher

than the baseline score of 0.206, which would occur in the case of classifying every speech as popular. This is the

model that we will present to the BYU speeches team. However, we do not anticipate that a 37.1% precision rate will

be high enough to put the tool immediately into use. It is a promising start though, showing that building a popularity

predictor for BYU speeches through machine learning is a viable possibility. Additionally, the type of intelligibility

that the decision tree gives is invaluable for members of the BYU speeches team hoping to make data-driven decisions

for their company, intelligibility which is impossible with any of the other models tested.

 Similar work has been requested on the university-sponsored magazine.byu.edu. This will be especially interesting,

since this content is generated by members of the speeches team, not invited speakers. Thus, changes could be made

in the content to optimize for success, based on the prediction of the model.

 We also recognize some limitations with the features and labels which we have chosen, which have restricted the

success that our model has been able to reach. We conjecture that a more accurate label could be obtained by looking

only at the number of page views for the first 6 months since a speech was posted to the website. We did not include

this label in our research since if the speech was delivered a long time ago but only recently posted to the speeches

website, then it is unlikely that the post date will be recorded anywhere. We believe that the labels that we chose

optimized both for accuracy and for volume of speeches that we could analyze, but further work could build upon

these labels.

 To improve our predictors, we have considered adding several features. For example, we have a Python script that

determines if a topic is a significant portion of a talk. We could find which of these topics are the most and least

popular and then add these as features to our model. We have also considered repeating our results for several other

machine learning models, to see if any of them produce better results. Additionally, we could bin the page views into

a larger number of bins (e.g. unpopular, semi-unpopular, neutral, semi-popular, and popular), and see how our models

perform.

6. Acknowledgments

Thank you to BYU speeches for giving us access to the Google Analytics data for their website.

912

7. References

1. R. Bandari, S. Asur, and B. A. Huberman. The pulse of news in social media: Forecasting popularity, 2012.

2. X. Zhang, X. Chen, Y. Chen, S. Wang, A. Li, and J. Xia. Event detection and popularity prediction in

microblogging. Neurocomputing, 149:1469–1480, 2015.

3. “Social Security.” Social Security History, Social Security Administration,

www.ssa.gov/oact/babynames/limits.html.

4. “API Reference.” Contributing Guidelines - TextBlob 0.15.1 Documentation,

textblob.readthedocs.io/en/dev/api_reference.html.

8. Endnotes

1. Weka’s wrapper algorithms only support F1 score, not the more general Fß score. We modified Weka’s source

code so that we could run the wrapper with other F scores; however, this ultimately didn’t improve the models’ F0.2

score when compared to subsets found using the F1 score. Thus, we decided to use F1 score for feature selection even

though we use F0.2 score for final evaluation.

