
Proceedings of The National Conference

 On Undergraduate Research (NCUR) 2019

Kennesaw State University

Kennesaw, Georgia

April 11-13, 2019

A Hybrid Software Defined Network Platform for Undergraduate Research

and Education

Steven Cilenti

Information Technology

The United States Military Academy

West Point, New York 10997 USA

Faculty Adviser: MAJ Eric Sturzinger

Abstract

Software Defined Networks (SDNs) are leading the evolution toward network programmability and open

architectures. While many corporations, nonprofits, and individuals have developed training on SDNs, the industry

has a significant gap with the robustness of entrenched traditional network educational models, such as Cisco’s

Networking Academy. The Department of Defense (DoD) will likely adopt some form of SDN into its global transport

network at various tiers and authority boundaries. It is imperative for 21st century leaders to understand how and why

the manner in which DoD provides Information Technology (IT) services to its customers is changing with such

rapidity. Therefore, we developed three basic SDN course lessons as a base of knowledge and support and integrated

a hybrid physical SDN research platform into existing laboratory infrastructure for faculty research and capstone

projects for senior cadets. This was accomplished by leveraging existing SDN-related tutorials and resources and

integrating them within a virtualized SDN simulation environment. The three lessons were developed for integration

into our core networking course that describes fundamental networking concepts in the context of an SDN - with a

centralized control plane, while ensuring lesson learning objectives were achievable by non-technical majors yet

sufficiently comprehensive across the fundamental operations of an SDN. The hybrid research platform consists of a

number of Virtual Machines (VMs) running Mininet1 - an SDN simulation environment - and hosted on a VMware

vSphere cluster with direct connectivity to twelve physical openflow-capable switches. This will allow students in the

networking course to plan, design, implement, and test a basic SDN topology in either a virtual, physical, or hybrid

environment. In addition, it will provide topological and experimental flexibility to student and faculty researchers

and senior capstone project teams alike.

Keywords: Software Defined Networking, Department of Defense, Undergraduate Technical Education

1. Introduction

The Department of Defense has been on the leading edge of IT innovation since ARPANET. One of the characteristics

of IT technologies is that they necessitate continuous change. This new networking paradigm known as Software

Defined Networking (SDN) is growing rapidly within the tech industry. With a strong majority of companies turning

toward virtualization and software defined data centers, the Department of Defense has fallen behind. It is inevitable

that the DoD adopts some type of SDN paradigm, rendering it essential that our education curriculum keep pace with

these new advances. The transition to software defined networks is necessary for the DOD to keep its technical

infrastructure relevant. If the military is going to adapt to this change, then its future leaders need to be familiar with

these developments. Currently, the United States Military Academy has no hardware or software components of a

software-defined network capable of supporting SDN research. The Academy's two primary networking courses,

CY350 and CS484, do not provide hands-on platforms for students to design and implement a working software-

1017

defined network. The goal of this study was to close this capability gap for future research and establish SDNs as part

of the permanent IT/CS curriculum. Since SDNs are becoming increasingly relevant we want students to be introduced

and familiarized with their general operation and implementation. Section 3 of this paper discusses how we created

three lesson plans that can be integrated into an undergraduate networking course. These lessons are also accompanied

by supporting resources and labs. Our next priority was to develop a hybrid physical/virtual SDN research platform

for students and faculty, which is discussed in section 4. This platform will act as a resource that will be available for

projects and research by both students and faculty in order to further push the bounds of our SDN knowledge and

utilization.

2. Related Work

Software defined networking is a relatively new term, but it has its roots in multiple areas of research and development.

"The Road to SDN: An Intellectual History of Programmable Networks" explains the history of software defined

networking and how it was developed2. SDN solves many of the challenges of traditional networks by separating the

control plane from the data plane, allowing for easier network management. "Software-Defined Networking: A

Comprehensive Survey" largely explains how software defined networks differ from traditional networks3. Traditional

networks are hard to manage due to operators needing to configure each individual device separately. The difference

with the SDN paradigm is reflected in Figure 1. "Opportunities and Research Challenges of Hybrid Software Defined

Networks" presents research on hybrid networking models, integrating SDNs with traditional network infrastructure,

and providing analysis on different hybrid models4.

Figure 1. The separation of the control and data planes in SDN5.

 In order to create and run tests on virtual SDNs, we decided to utilize Mininet. Not only can Mininet be used to

rapidly prototype large networks, but it also supports SDN functionality. These details were originally presented in

"A Network in a Laptop: Rapid Prototyping for Software-Defined Networks"6. Mininet is great for both research and

educational purposes. "Teaching Software Defined Networking: It's not just coding" talks about integrating SDNs into

academics and presents research on SDNs being introduced to students in New Zealand7. The school used both

physical network equipment as well as a virtual network using Mininet. The paper expresses how important it will be

for institutions to prepare students for this expanding technology. As for virtualizing these networks, "Modeling

Software Defined Networks using Mininet" describes how Mininet can be used to test SDN features8. The software

allows for an efficient and rapid deployment of a virtual SDN technology. Mininet is used by schools such as James

Madison University to teach SDN concepts, as shown in the paper "Hands-on Labs and Tools for Teaching Software

Defined Network (SDN) to Undergraduates"9. This paper just discusses a virtualized platform, while our research is

on a hybrid, physical and virtual, research platform.

 The applicability of SDNs to the DOD is explained in "Software-Defined Networking and Network

Programmability: Use Cases for Defense and Intelligence Communities"10. Not only does the paper expand on why it

is crucial the DOD adopts SDNs, but it also explains how SDNs have the ability to solve many of the DODs networking

and security issues. "Employing SDN to Control Video Streaming Applications in Military Mobile Networks" shows

1018

one such use case of Software Defined Networking11. SDNs can be used to allow more efficient and dynamic

management of our military's data.

3. Educational Approach

One of our goals was to provide students with an introduction to Software Defined Networking. Every cadet takes

basic IT classes which don’t delve deep into networking. Cadets also choose an Engineering sequence of three classes

to take, one of which of which is the Cyber Engineering Sequence. The very first class in this sequence is CY350,

Network Engineering and Management. The traditional networking paradigm has been the only networking paradigm

taught in that class. USMA had no installed hardware or software capable of supporting SDN research and there was

a lack of general familiarity with the SDN paradigm. To do this we developed an educational lesson plan that could

be integrated into one of our existing networking courses. To accompany those lessons, we developed some hands-on

lab material that would assist in learning and provide a baseline knowledge level for implementing SDNs. We also

developed a hybrid virtual-physical research platform for students and faculty to use for education and research.

3.1 Lesson 1: Intro to Software Defined Networking

Lesson Objectives:

 Understand how SDNs differ from traditional networks

 Mininet Demo: Basic switch controller interaction

 Understand how to use MiniEdit

 Be able to create and run a Topology

 The first lesson focuses on the basics of SDN and how it differs from traditional networks. It enumerates the pros

and cons of each and their different use cases. This lesson is also used to introduce students to Mininet, which allows

for the creation and testing of virtual networks, including SDNs. Mainly, they are shown how to start Mininet and set

up their network. An example of a basic network in the MiniEdit interface is shown in Figure 1.

Figure 1. MiniEdit: a graphical interface for building Mininet networks

 The second part of the lesson shows students how to link a minimal controller to the network and run a quick test to

show functionality.

1019

3.2 Lesson 2: The Control Plane

Lesson Objectives:

 Describe how the control plane works

 Develop rules for routing

 Program a controller application, using Ryu (python)

 The second lesson is meant to really get into how the control plane works and how SDNs utilize controllers. Students

are shown how to set up and develop rules for a controller which would be the equivalent of what they had already

learned with traditional networks. The controller is written using Ryu, which is a python based module. Students are

not expected to build controllers from scratch, but instead manipulate prebuilt templates to adapt to various scenarios.

The controller instance is written using a python Class. The controller template being used in this lesson comes from

the Ryu documentation and the beginning of which is shown in figure 2.

Figure 2. Controller Code Snippet12

 Students will have the opportunity to test out their controller using the Mininet network they had created from the

previous lesson.

3.3 Lesson 3: SDN Implementation

Lesson Objectives

 Describe how SDNs are used commercially

 Describe SDN application to tactical environment

 Transfer virtual network to physical network

 The third lesson is meant to transition the students from a virtualized network to a physical network. The concepts

emphasized during this lesson include some of the use cases for SDNS. This includes how they are used commercially

by corporations like Google, as well as how they can be used in a tactical environment. This lesson includes a

demonstration which shows how the students can utilize the Zodiac GX switches at their computer stations and connect

them to the controllers they set up during the previous lesson. The layout of the physical network is defined in section

4.2. They are introduced to configuring the switches using the web interface shown in Figure 3. Students will then

work together to direct and manage traffic on the lab network to accommodate given scenarios.

1020

Figure 3. Zodiac GX web interface

3.4 Labs and Support

As a companion to the lessons, we developed two labs which aid in learning how to use Mininet and Ryu. The Mininet

lab details how to utilize to design and manipulate an SDN topology. It also includes instructions on connecting the

topology to a controller and running it. The Ryu lab breaks down the key functionality of the basic Ryu controller

application. It details how to manipulate the code to turn off and on functions like updating the MAC-to-port table on

the controller and updating the flow tables on the switches.

 Many different sources are used in the development of these lessons, most of which haven't been combined before.

By integrating these sources into a lesson plan, students will have a much more comprehensive and efficient learning

experience. It is important to note that this material is not completely comprehensive. It is meant to also be

understandable to someone who is not a networking related major. These lessons will utilize what students have

already learned about traditional networks in order to introduce them to software defined networks.

4. Platform/Infrastructure

4.1 Virtual Platform

In order to work with and teach SDN concepts, we chose to use both virtual and physical platforms. The advantage to

having virtual networks includes being able to scale and adapt these networks to suit any classroom or research

requirements, without having to purchase and configure additional equipment or infrastructure. For our simulated

network, we chose Mininet. Mininet runs in on an Ubuntu VM and allows you to build and run tests on a virtual

network. The program also allows you to experiment with OpenFlow switches and controllers. A great thing about

working with Mininet is that you can use either a console or a GUI (Graphical User Interface) to build out and test

network functionality. The controllers run using Ryu, which is a python API that also supports the OpenFlow protocol.

A virtual platform allows for scalability and flexibility, which one doesn’t have with physical equipment. It allows

students to each design and run their own networks. For research, it greatly speeds up the design and testing process.

1021

 To demonstrate how this virtual network functions, we used a simple topology with 2 hosts connected to a switch.

Figure 4 shows this network being run along with a Ryu controller. When h1 (host 1) pings h2 (host 2), s1 (switch 1)

sends a packet to the controller to know where to send the pings. The controller then sends a flow update to switch 1.

s1 then sends the ping to h2. When h2 sends the ping response, switch 2 contacts the controller to locate h1. For every

subsequent ping, s1 has both h1 and h2 in its flow table so it no longer needs to contact the controller for this exchange.

This is the reason why the first ping took 7.47 MS while every subsequent ping took less then .4 ms.

Figure 4. Controller output (left terminal) after pinging from one virtual host to another (right terminal)

4.2 Physical Platform

While a physical platform is logistically difficult to acquire and implement, requiring the purchase and use of

hardware, it is much more realistic. Our physical platform consists of two different switch models. The first is the

Zodiac GX13, which is a simple 5 port switch that utilizes OpenFlow enabled software. The way we designed the lab

layout is that every student has access to their own Zodiac switch linked to their work station. These switches are

linked together as seen in figure 5.

1022

Figure 5. Physical lab topology diagram

 We are also utilizing two EdgeCore switches, which are larger 54 port switches without any pre-installed software14.

This is what connects our external network to the network of Zodiac switches. Because of this layout, every student

is able to run their own controller on a different port, which the switches can be set to listen to depending on the

scenario.

4.3 Hybrid Infrastructure

Finally, we created a hybrid SDN platform to support a more adaptable and efficient architecture. As part of this

layout, the SDN controllers can be run in Ubuntu VMs in our VSphere cluster. This VSphere cluster is connected to

our SDN and can run VMs which can be used as both controllers and hosts, as seen in Figure 6.

Figure 6. A VSphere cluster example for testing the SDN

 The students will be able to use the same controllers that they did with Mininet, easily transitioning between their

simulated and physical networks.

 The following scenario is meant to demonstrate how this network works. Switch 8 wants to send data to switch 10,

but does not know where that switch is, so the mac address has not been added to its flow table. Switch 8 will take the

first packet and send it to its controller in the VSphere cluster. If Switch 10 is in the controller’s MAC-to-port table,

then it will send a flow rule back to switch 8 to update its flow table. Now switch 8 will be able to send the data to

Switch 10 without needing to contact the controller because its flow table has been updated. On the other hand, if the

1023

controller did not have switch 10 in its MAC-to-port table, it would have sent a FLOOD command back to the switch

in order to locate switch 10. This will tell the switch to send out the frame on all ports. Once switch 10 responds, the

controller will update its MAC-to-port table and send flow table updates to the switches.

5. Experimentation

To date, we have only tested the basic connectivity of the network with the scripts which were developed for the

lessons. We have ensured the functionality of the virtual, physical, and hybrid networks using both physical and virtual

controllers. Further testing and research will be continued through capstone projects led by seniors at the Academy.

Our goal is to develop a novel trust model to secure future SDN topologies in a tactical military network. The purpose

of the hybrid topology is to simulate the integration of the tactical network with the national-level cloud-based data

centers.

6. Conclusion

Through our research, we filled a capability gap at West Point, which we feel is important due to the growing

importance of Software Defined Networks. We were able to consolidate existing resources to build an easy to

understand, yet effective educational resource. This will allow students with limited knowledge of networks to learn

and understand how to implement a software defined network. It is imperative to educate our future leaders to on this

emerging paradigm as it will serve to better our ability to maneuver in cyberspace while denying the same to our

adversaries.

7. References

1. Bob Lantz, Brandon Heller, and Nick Mckeown, “A Network in a Laptop,” Proceedings of the Ninth ACM

SIGCOMM Workshop on Hot Topics in Networks - Hotnets 10 (2010).
2. Nick Feamster, Jennifer Rexford, and Ellen Zegura, “The Road to SDN,” Queue 11, no. 12 (2013): 20–40.

3. Diego Kreutz, Fernando Ramos, Paul Verissimo, Christian Rothenberg, Siamak Azodolmolky, and

Steve Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1

(2015): 1476.
4. Diego Kreutz, “Software-Defined Networking: A Comprehensive Survey.” (2015): 1476.
5. Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure, “Opportunities and Research Challenges

of Hybrid Software Defined Networks,” ACM SIGCOMM Computer Communication Review 44, no. 2 (2014): 70–

75.

6. Bob Lantz, “A Network in a Laptop,” (2010).

7. Cosgrove, Steve, “Teaching Software Defined Networking: Its Not Just Coding,” 2016 IEEE International

Conference on Teaching, Assessment, and Learning for Engineering (TALE) (2016).

8. Casimer DeCusatis, Aparicio Carranza, and Jean Delgado-Caceres, “Modeling Software Defined

Networks using Mininet,” Proceedings of the 2nd International Conference on Computer and Information

Science and Technology (CIST16) (May 2016).
9. Emil Salib, and John Lester, “Hands-on Labs and Tools for Teaching Software Defined Network (SDN)

to Undergraduates,” Cisco (2014).

10. Mark Mitchiner and Reema Prasad, “Software-Defined Networking and Network Programmability: Use

Cases for Defense and Intelligence Communities,” Cisco White Paper (2014).

11. Iulisloi Zacarias, Janaina Schwarzrock, Luciano P. Gaspary, Anderson Kohl, Ricardo Q. A. Fernandes,

Jorgito M. Stocchero, and Edison P. De Freitas, “Employing SDN to Control Video Streaming Applications in

Military Mobile Networks,” 2017 IEEE 16th International Symposium on Network Computing and Applications

(NCA) (2017).

12. “Ryu Documentation,” Release 4.28 (2018).

13. "Zodiac GX," Northbound Networks, https://northboundnetworks.com/products/zodiac-gx.

14. “AS4610-54T,” Edgecore Networks, https://www.edge-

core.com/productsInfo.php?cls=1&cls2=9&cls3=46&id=21.

https://northboundnetworks.com/products/zodiac-gx
https://www.edge-core.com/productsInfo.php?cls=1&cls2=9&cls3=46&id=21
https://www.edge-core.com/productsInfo.php?cls=1&cls2=9&cls3=46&id=21

