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Abstract 

 

The primary goal of this research is to identify a subset of genes as prognostic markers for glioma, using mRNA 

expression of 20501 genes in The Cancer Genome Atlas data. The selected genes will help predict risk for individual 

glioma patients. We use a multivariate Cox proportional hazards model based on both clinical and genetic covariates. 

After preliminary filtering, elastic net is used for automatic variable selection. Furthermore, stability selection is 

adopted to improve feature selection stability, combining subsampling with elastic net. As a result, we get a stable 

feature set of 22 genes. From 10-fold cross-validation, concordance index is 0.864 and stability is 0.962, indicating 

the algorithm is robust in prediction and consistent in selection. 
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1. Introduction 
 

Glioma is a common type of brain tumor. Tumors have four grades by World Health Organization (WHO) 

classification. High grade glioma has poor prognosis, with median overall survival of 3 years for grade III and 15 

months for grade IV. An accurate prediction method of survival can help with personalized treatment. Discovering 

genomic based biomarkers for glioma prognosis is an active research field. 

   A main challenge in gene analysis is that the data usually consists of tens of thousands of genes yet only hundreds 

of patients. This leads to the high dimensional problem where the number of predictors is much bigger than the number 

of observations, causing overfitting and high variance. Hence, we want to identify a small subset of genes that are 

most relevant to glioma prognosis, to improve prediction accuracy and interpretability of the model. Least absolute 

shrinkage operator (lasso) is a powerful method to perform continuous shrinkage and automatic variable selection 

with L1 penalty1. Furthermore, elastic net uses a combination of L1 (lasso) and L2 (ridge) regularization, and takes 

the advantage of both methods to achieve sparsity and prediction accuracy2. 

   In addition to predictive power, another concern is the stability of feature selection (FS), defined as the sensitivity 

of FS algorithms to variations in the training set. Selecting a stable set of features is significant to the reliability and 

interpretability of a model. If small perturbations in training samples result in very different feature sets, the resulting 

genes cannot be established as reliable prognostic markers. Meinshausen and Bühlmann proposed stability selection 

method, which combines subsampling with FS to improve stability and performance of existing methods3. When 

applying FS on multiple subsamples, selection frequency of each gene is counted and genes with high selection 

probability are selected. A similar idea has been presented in bootstrap-enhanced lasso (bolasso), which uses 

bootstrapping and takes features selected by all bootstrap samples or at least 90% samples in a soft version4. While 

those studies originally focus on lasso, the frameworks can be extended to other FS algorithms. 

   In this research, we use a multivariate Cox proportional hazards model to analyze the relationship between survival 
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time and risk factors including both clinical and genetic covariates5. For gene selection, we adapt stability selection 

for elastic net. The original approach subsamples only half of the data, which may result in a significant loss of 

information. Thus, we choose to subsample 90% data. The objective of our work is two-fold: (i) to identify a stable 

set of genes related to glioma prognosis, and (ii) to produce a model that can predict relative change in risk based on 

simultaneous effects of important covariates. 

   In the rest of the paper, we describe the data used in the project in Section 2, and then illustrate our methodology for 

survival analysis and variable selection in Section 3. The experimental results and discussions are presented in Section 

4. We end up with conclusions in Section 5. 

 

 

2. Data 
 

The glioma data of The Cancer Genome Atlas (TCGA) project is downloaded from the Broad Institute GDAC Firehose 

via TCGA2STAT package in R6. The dataset includes clinical and genetic data of 1110 patients from two subtypes: 

Lower Grade Glioma (LGG) and Glioblastoma Multiforme (GBM), corresponding to grade II, III and grade IV 

respectively. RNA-Sequencing data from the second analysis pipeline (RNASeqV2) is used, represented by upper 

quartile normalized RSEM values of 20501 genes. For clinical data, survival time, censoring status, age, gender, and 

histological stage are used. Only 674 samples have both clinical data and gene expression data. 

   In preprocessing, eight samples are removed for the following reasons. While histological stage consists of 6 stages, 

2 stages are removed as each case has only 1 sample. The 4 remaining stages are astrocytoma (A), oligoastrocytoma 

(OA), oligodendroglioma (O), and untreated primary gbm (G). Also invalid or missing values in survival time or age 

are removed. As a result, 666 samples are retained for the following analysis. In addition, clinical variables are 

transformed. Survival time (time to death or last follow-up) is converted from days to months. Since gender and 

histological stage are qualitative, they are encoded using indicator variables, with female and astrocytoma serving as 

referents. 

 

 

3. Methodology 
 

3.1 Survival Analysis 
 

To analyze the relationship between survival time and covariates, we adopt Cox proportional hazards model: 

 

 
 

ℎ(𝑡|𝒙𝑖) = ℎ0(𝑡) 𝑒𝑥𝑝(𝒙𝑖
𝑇𝛽) 

 

 
 

where h(t|𝒙𝑖) is the overall risk or hazard at time t for an individual i with risk vector 𝒙𝑖, and h0(t) is a baseline hazard 

rate. For a single covariate k, the hazard ratio (HR) reveals its effect on overall risk, defined as HRk = exp(βk). HR > 1 

indicates a positive effect, HR < 1 indicates a negative effect, and HR = 1 indicates no effect. 

 

3.2 Variable Selection 
 

As a preliminary step, 4000 genes with top variance are selected, and genes with small variability are filtered out. 

Also gene expressions are log2(x + 1) transformed to reduce skewness in data. It is followed by univariate screening, 

and multivariate selection with elastic net and stability selection.  

 

3.2.1 univariate selection 
 

By fitting the univariate Cox model, we derive the HR and p-value from Wald test for each gene. While HR indicates 

biological significance, p-value indicates statistical significance. The significant genes are selected based on these two 

criteria. In addition, the p-values are adjusted by Benjamini-Hochberg procedure to control false discovery rate7. The 

selection thresholds are: HR > 2 or HR < 1/2, and adjusted p-value < 0.01. 
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3.2.2 multivariate selection 
 

We adopt a multivariate Cox model with elastic net penalty using all gene expressions as covariates, and the overall 

survival time as the dependent variable. Elastic net is a generalization of L1 and L2 regularization, characterized by a 

convex penalty:  

 

 

𝜆(𝛼|𝛽|1  +  (1 −  𝛼)|𝛽|2) 
 

 

   We use the efficient implementation of elastic net in glmnet package in R8. There are two tuning parameters. α is 

the compromise between lasso and ridge, which is set to 0.8 here. λ controls regularization strength, and is determined 

dynamically by a nested loop of 5-fold cross-validation. 

   While many models are based on either clinical data or genetic data, combining both information is promising to 

improve predictive power. In our model, the explanatory variables include age, histological stage (with 4 levels), 

gender (with 2 levels) and genetic variables selected from the previous procedure. Especially, age and histological 

stage are closely related with survival time. We adopt the ‘favoring’ strategy proposed by De Bin et al.9, where clinical 

variables are unpenalized and hence are always retained by the model. All genetic variables are equally penalized. 

 

3.2.3 stability selection 

 
Stability selection is a general framework using subsampling to improve stability and prediction of a given variable 

selection algorithm. The basic idea is to apply the algorithm to multiple subsamples of original data, and genes with 

high selection probability are chosen as important features. 

   Formally, the maximum likelihood estimator of selection probability for gene k is derived as �̂�𝑘 =  
𝑎𝑘

𝑁
 , where N is 

the number of subsamples and ak is the number of times when k is selected by the algorithm. The set of stable variables 

is defined as �̂�𝑠𝑡𝑎𝑏𝑙𝑒 =  {𝑘: �̂�𝑘  ≥  𝜋𝑡ℎ𝑟}, where πthr is the threshold probability. 

   Here, we adapt stability selection for elastic net. We use the strategy of random subsampling 90% of training data, 

and create N = 100 replicates. The cutoff πthr is set as 0.5. For downstream prediction, we fit the resulting stable genes 

and clinical variables into a multivariate Cox model. 

 

3.3 Evaluation Metrics 
 

The algorithms are evaluated based on two criteria: stability of feature selection procedure, and prediction accuracy 

of the resulting model. 

 

3.3.1 stability 
 

Stability across multiple feature sets 𝒜 can be quantified as the average of pairwise similarity10: 

 

 
 

�̂�(𝒜) =  
1

𝑀(𝑀 − 1)
∑ ∑ 𝜙(𝑠𝑖 , 𝑠𝑗)

𝑀

 𝑗=1,𝑗≠𝑖

𝑀

𝑖=1

 

 

 
 

where M is the total number of sets, and 𝜙 is pairwise similarity. 

   Specifically, Jaccard index is used as a measure of similarity between two sets: 

 

 
 

𝜙𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑠𝑖 , 𝑠𝑗) =
|𝑠𝑖 ∩ 𝑠𝑗|

|𝑠𝑖 ∪ 𝑠𝑗|
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3.3.2 prediction accuracy 
 

The concordance index (c-index) is a standard measure of prediction performance in survival analysis based on rank 

correlation, defined as the proportion of concordants11: 

 

 
 

𝑐-𝑖𝑛𝑑𝑒𝑥 = 𝑃𝑟(𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡) =  
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 

𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠
 

 

 

   A pair of observations is concordant if the shorter observed survival time of the two has the larger predicted risk. 

The comparable pairs are all possible pairs excluding incomparable pairs, where two uncensored observations have 

tied survival time, or the censored observation is shorter than the uncensored one. 

 

 

4. Result and Discussion 
 

We perform data analysis on the TCGA glioma dataset using the statistical software R. 

 

4.1 Evaluation 
 

To evaluate performance of different methods, we derive c-index and stability by 10-fold cross-validation. The 

stability is calculated across M = 10 feature sets obtained from each training fold. The results are shown in Table 1. 

   Our primary method is stability selection with both clinical and genetic variables (STAB-CG), which has c-index of 

0.864 and stability of 0.962. For comparison, we also evaluate three other methods: unpenalized Cox regression with 

clinical variables only (COX-CLIN), elastic net with genes only (EN-GENE), and elastic net with both clinical and 

genetic variables (EN-CG). All the methods are based on a multivariate Cox model. 

   EN-CG has higher c-index than both COX-CLIN and EN-GENE. This indicates that combining clinical and genetic 

variables is beneficial for prediction. Compared to EN-CG, STAB-CG has a slightly higher c-index and significantly 

higher stability. Enhancing elastic net with stability selection increases prediction accuracy and improves feature 

selection stability greatly, resulting in a highly consistent and interpretable model. 

 

Table 1. Performance of four methods in 10-fold cross-validation. c-index is represented by mean, with standard 

deviation in parenthesis. 

 

Method c-index Stability 

COX-CLIN 0.835 (0.030) NA 

EN-GENE 0.844 (0.033) 0.649 

EN-CG 0.854 (0.035) 0.535 

STAB-CG 0.864 (0.034) 0.962 

 

4.2 Final Model 
 

We derive the final gene set and model by applying stability selection to the whole dataset. 

 

4.2.1 univariate selection 

 
With 4000 input genes after variance filtering, univariate selection results in 1266 genes, with HR > 2 or HR < 1/2 

and adjusted p-value < 0.01. The result is visualized as volcano plot (Figure 1), represented by -log10(adjusted p-value) 

and log2(HR). 
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Figure 1. Volcano plot for univariate selection results. The log transformed cutoffs are |x| ≥ 1 and y ≥ 2, shown as 

red lines. The green points are the 1266 selected genes.  

 

4.2.2 stability selection 
 

Elastic net with stability selection results in 22 genes, with selection probability �̂� ≥ 0.5. Since the estimated stability 

of this method is as high as 0.96, the final feature set is robust and reliable. Eventually, we fit a multivariate Cox 

model with clinical variables and selected genes as covariates. By global likelihood ratio test, the p-value ≤ 2 × 10−16. 

   The statistics of clinical variables and selected genes are summarized in Table 2. Three genes have notably high 

selection probability: SMC4 (1.0), AGPAT12 (0.96), and ERRFI1 (0.93). The estimated hazard ratios reveal that, 

SMC4 and ERRFI1 are positively related to risk, and AGPAT12 is negatively related to risk. We conjecture genes 

with high selection frequency are closely related to glioma prognosis. However, the biological significance of these 

genes needs more rigorous scientific investigation. 

 

Table 2. Feature set and corresponding statistics. �̂� is the selection probability in 100 subsamples. The 95% confidence 

interval (CI) is based on hazard ratio. Gender has 2 levels: male and female, with female as the referent. Stage has 

four levels: astrocytoma (A), oligoastrocytoma (OA), oligodendroglioma (O), and untreated primary gbm (G), with A 

as the referent. 

 

Covariate �̂�  HR 95% CI 

Age NA 1.033 (1.021, 1.046) 

Gender (male) NA 1.267 (0.940, 1.707) 

Stage (OA) NA 0.913 (0.552, 1.509) 

Stage (O) NA 0.767 (0.489, 1.201) 

Stage (G) NA 0.915 (0.584, 1.434) 

SMC4 1.00 1.218 (0.975, 1.521) 

AGPAT12 0.96 0.625 (0.455, 0.858) 

ERRFI1 0.93 1.117 (0.961, 1.298) 

AGPAT1 0.87 0.497 (0.287, 0.860) 

TTYH3 0.85 1.143 (0.909, 1.436) 

GNS 0.72 0.899 (0.651, 1.241) 

DDX1 0.72 0.691 (0.482, 0.991) 

SMARCB1 0.71 0.980 (0.612, 1.570) 

BID 0.70 0.848 (0.631, 1.139) 
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PTGFRN 0.68 1.048 (0.876, 1.254) 

NR1D2 0.67 0.758 (0.593, 0.970) 

TXN2 0.65 0.706 (0.462, 1.078) 

TCF25 0.63 0.730 (0.431, 1.237) 

ARL6IP1 0.62 2.015 (1.397, 2.907) 

SFRS5 0.60 0.750 (0.561, 1.004) 

PPP2R5C 0.58 0.918 (0.593, 1.422) 

NFIB 0.57 0.832 (0.678, 1.022) 

SHISA5 0.56 1.364 (0.986, 1.889) 

HSPB1 0.54 0.975 (0.782, 1.216) 

TM7SF2 0.54 0.882 (0.711, 1.093) 

CPD 0.52 1.119 (0.849, 1.475) 

TGFBR1 0.52 1.294 (0.981, 1.705) 

 

4.3 subsample number in stability selection 
 

We are interested in investigating how different subsample number N in stability selection affects the stability and c-

index. We examine N ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} in 10-fold cross-validation. N = 0 (baseline) is 

equivalent to elastic net without stability selection, and N = 100 is used in our aforementioned method. The results 

are shown in Figure 2. 

   In general, as N increases, c-index and stability increase. N has a minor effect on c-index, but a great effect on 

stability. Using large N is computationally expensive in practice. Yet the figure shows precipitous increase occurs at 

the early stage. N = 20 leads to stability of 0.893, which is 67% higher than that of the baseline. Hence, it is feasible 

to use stability selection to improve variable selection at a relatively small computational cost. Additionally, the 

computation of independent subsamples can be greatly facilitated by parallel processing. 

 
 

Figure 2. Effect of subsample number N on stability and c-index. 

 

 

5. Conclusion 

 
By comparing different methods, we find that using genetic and clinical covariates jointly is beneficial for risk 

prediction. Also, stability selection can greatly improve stability and interpretability of elastic net. Efficient 

improvement can be achieved with relatively few subsamples. Using elastic net and stability selection, we discover a 

stable set of 22 genes as prognostic biomarkers. The algorithm has stability of 0.962 and c-index of 0.864 in 10-fold 

cross-validation, evidencing that the resulting gene set is reliable and the model is robust in prediction. However, the 
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biological roles of these genes in glioma pathogenesis need further investigation. 

   For future work, we want to look into the correlations between genes and investigate the grouping effect of this 

selection procedure. Also, we are interested in examining different settings of hyper-parameters, such as weight  in 

elastic net, cutoff probability πthr and subsample size in stability selection. 
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