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Abstract 

 
Contemporary cardiac research has shifted from traditional experimental and clinical studies and currently 

incorporates various computational approaches to understanding heart function and disease. Particularly in the last 

decade, new insights into the electrophysiology of the heart has led to a detailed biophysical and biochemical 

understanding of cardiomyocytes. Significant efforts to integrate various aspects of cellular cardiac biology such as 

signaling cascades and metabolism have shown promising results toward new drug discoveries for heart diseases. To 

investigate the effectiveness and functionality of therapeutic models in the context of cardiac electrophysiology, this 

paper aims to understand some mathematical models of the cardiac action potential and their evolution in systems 

biology. Several examples of mathematical models, from the 1960s Hodgkin-Huxley experiments to present day 

modifications are attempts to explain a particular biological phenomenon (arrhythmias, resting potential, intracellular 

ionic regulation, etc.) in a larger context by examining how several biological factors interact in a particular model. 

In this paper, we consider a model for the action potential propagation through the heart and apply a finite element 

scheme to analyze its behavior. We use Python and the NumPy library for the computational model to carry out the 

numerical solution. Additionally, genetic modifications such as optogenetic control mechanisms — in which 

illumination is used to elicit a bioelectric response in tissue modified to express photosensitive proteins (opsins) to 

generate spatiotemporally precise responses in targeted cells or tissues — are introduced into the models. The results 

of these simulations, carried out in Python, can provide physicians and researchers with a theoretical gateway into 

long-term treatments and cures for rhythm disorders of the heart. 

 

Keywords: Partial Differential Equations, Mathematical Models, Optogenetics, 

Neuroscience, Cardiac Electrophysiology 

 

 

1. Introduction 

 
Contemporary cardiac research has shifted from traditional experimental and clinical studies and now frequently 

incorporates computational approaches to understanding heart function and disease. Animal models such as mice and 

zebrafish are being used to study the heart — down to single myocytes — in vivo using advanced imaging technology. 

One consequence of these methods is the ability to study and record intracellular changes in a variety of cardiac cells. 

Theoretical approaches to understanding these electrical gradients and their consequent ionic currents in the cell are 

well documented. 1,2,3 From the initial Hodgkin-Huxley experiments with the squid giant axon in 1952, understanding 

action potentials in the brain and the heart using the properties of intermembrane ionic channels and other co‐ factors 

has evolved vastly. 3 Particularly in the last decade, new insights into the electrophysiology of the heart has led to a 

detailed biophysical and biochemical understanding of cardiac cells. The accumulation of K+ ions in the extracellular 

medium has been attributed to acidotic conditions in during ischemia or hypoxia. 4 Electrocardiogram (EKG) 
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interpretations of ischemia are commonly based on generic cardiac geometries but incorporating a patient‐ specific 

or even pathology‐ specific assessment of excitation patterns allows for a much accurate representation of the affected 

areas of the heart. 5 Such complex understanding of patient‐ specific geometries can be approached by electrical 

excitation algorithms to generate a model for the diseased heart. Significant efforts to integrate various aspects of 

cellular cardiac biology such as signaling cascades and metabolism have shown promising results towards new drug 

discoveries for heart diseases. 6 

   Modeling applications to clinical and physiological settings requires a deeper mechanistic understanding of the 

cardiac excitatory process. One of the major shortcomings of mathematical models in cardiology is that explanations 

are isolated and piece-wise for an integrated, cohesive organ system and does not replicate the physiological 

environment (e.g. ion channels in the cellular membrane in the organ itself). Most models are reductionist models 

used to elucidate the role of an individual component (i.e. ion channels) in the arrhythmogenicity and the action 

potential of the cell. Over the past decade, optical mapping studies have been used to provide experimental evidence 

of these theoretical approaches. Additionally, biochemical models that explain electrophysiological processes as a 

coupled system have also been developed. 7 

   One of the first models describing electrical activity in neurons is the Hodgkin-Huxley model for neuronal action 

potentials. In 1952, Hodgkin and Huxley demonstrated that the amplitude and rate of rise of an action potential of the 

squid giant axon is dependent on the extracellular sodium concentration, which leads to a large and specific increase 

in the permeability of the cellular membrane to sodium ions. Hodgkin and Huxley used the voltage-clamp technique 

to separate the membrane current into sodium and potassium components to compose a model in which these currents 

vary with the membrane electrical potential and time. These equations are experimentally determined to reproduce 

many of the electrical properties of the squid giant axon, including the shape and size of the action potential and the 

velocity of conduction. 3 The range of biological phenomena that these equations describe have greatly increased since 

the initial experiments. 4 

 

1.1 The FitzHugh-Nagumo Model 

Other widely recognized models which use a phenomenological approach to understanding the cardiac action 

potential, specifically, consist of the FitzHugh-Nagumo-type models (Figure 2). These models are derived from the 

original FitzHugh-Nagumo two-variable system of equations: 2,8 

 

 

𝜙̇ = 𝑓𝜙 = 𝑐[𝜙[𝜙 − 𝛼][1 − 𝜙] − 𝑟], (1) 

𝑟̇ = 𝑓𝑟 = 𝜙 − 𝑏𝑟 + 𝑎, 

 

 

where 𝜙 and 𝑟 represent the potential and recovery variables, respectively. The Aliev-Panfilov model is an adaption 

of FitzHugh-Nagumo-type models for action potentials that has been customized using experimental data from a 

canine myocardium. These modifications incorporate the following source terms: 2,8 

 

 

𝜙̇ = 𝑓𝜙 =  𝑐𝜙[𝜙 − 𝛼][1 − 𝜙] − 𝑟𝜙 (2) 

𝑟̇ = 𝑓𝑟 = [𝛾 +
𝜇1𝑟

𝜇2 + 𝜙
] [−𝑟 − 𝑐𝜙[𝜙 − 𝑏 − 1]],  

 

 

where, again 𝜙 and 𝑟 represent the potential and recovery variables, respectively, while the rest are constant 

parameters. 8 All the variables in (1) and (2) are non-dimensional, including the temporal and spatial derivatives. Thus, 

initially published as a simplified, two-variable approach to the multi-system Hodgkin-Huxley equations, Aliev and 

Panfilov’s model uses a phenomenological approach to explain the basic properties of cardiac tissue. The Aliev-

Panfilov equations quantitatively reproduce important characteristics of action potential propagation of cardiac tissue, 

such as the duration and velocity of each action potential, the recovery period, and the shape of the cardiac action 

potential. 

   Aliev and Panfilov’s model provides a more realistic shape of the cardiac action potential compared to the original 

FitzHugh-Nagumo model, since the hyperpolarization overshoot is eliminated and an evident ‘plateau’ region is 

obtained (Figure 1). However, these equations do not explain dynamics of the action potential as thoroughly as an 
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ionic model that incorporates dynamics of ionic channels in the cell membrane. They are mainly used to model 

specific, multicellular cardiac cell experiments conducted. Changes in the extracellular ion concentrations or drug 

therapy that affects these concentrations will significantly alter any variables in such models. Gathering experimental 

data and using ionic models to ‘fit’ the data and compute desired properties of the action potential has been reported 

to be a better approach. Ionic models therefore incorporate a larger number of currents and conductivities based on 

detailed, single-cell experimental data. 9,10 

 

Figure 1. Pulse profile of the FitzHugh-Nagumo model 

 

 

2. Development of the Mathematical Model 

 
For the purposes of the simplified approach taken in this paper, the mathematical model implemented relies on 

established FitzHugh-Nagumo-type models for modeling the cardiac action potential. In the FitzHugh-Nagumo 

system, a sufficiently large perturbation from the steady state sends the state variables on a trajectory that initially runs 

away from equilibrium before returning to the steady state (Figure 2). The system’s excitation is characterized through 

four phases in the phase plane: the regenerative phase with a fast increase of the membrane potential; the active phase 

with a high and almost constant membrane potential causing a slow increase of the recovery variable 𝑟; the absolutely 

refractory phase with a fast decrease of the membrane potential at almost constant recovery 𝑟; and the relatively 

refractory phase with a slow decrease of the recovery variable 𝑟 as the solution gradually returns to the equilibrium 

point. 

 

Figure 2. Nullclines of the FitzHugh-Nagumo model 
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In order to build a model for the entire heart, the mechanistic properties need to be taken into consideration. 

For this, one needs to add a phenomenological diffusion term 𝑑𝑖𝑣 𝒒 (𝜙) to the original local version of the FitzHugh-

Nagumo equations, where 𝑞(𝜙) is the potential flux, which is modeled as 𝑞(𝜙) = ∇𝜙. 8 

 

 

𝜙̇ = 𝑑𝑖𝑣 𝒒 (𝜙) + 𝑓𝜙(𝜙, 𝑟) (3) 

𝑟̇ = 𝑓𝑟(𝜙, 𝑟) 

 

 

The right-hand sides are summarized in two source terms 𝑓𝜙(𝜙, 𝑟) and 𝑓𝑟(𝜙, 𝑟). In order to analyze the 

behavior of the solution via a finite element approach, the equations are cast in the residual form and passed to the 

weak formulation over element domains: 

 

 

𝑅𝜙 = 𝜙̇ − 𝑑𝑖𝑣(𝒒) − 𝑓𝜙 =̇ 0 𝑖𝑛 ℬ, (4) 

𝐺𝜙 =  ∫ 𝛿𝜙 𝜙̇ 𝑑𝑉
ℬ𝑒 + ∫ ∇𝛿 ⋅ 𝒒 𝑑𝑉

ℬ𝑒 −  ∫ 𝛿𝜙 𝑞̅ 𝑑𝐴
𝜕ℬ𝑒 −  ∫ 𝛿𝜙 𝑓𝜙 𝑑𝑉 = 0

ℬ𝑒 . 

 

 

The membrane potential 𝜙 is introduced as global degree of freedom on each finite element node in a four-

node quadrilateral element, whereas the recovery variable 𝑟 is treated as an internal variable and is stored locally at 

the integration point level, i.e. the local element level. Decomposing the potential in terms of the piecewise-linear 

shape functions 𝑁𝑖, and using backward finite difference for the temporal derivative, we obtain the following discrete 

residual 𝑅𝐼
𝜙

: 

 

 

𝑅𝐼
𝜙

= 𝑨𝑒=1
𝑛𝑒𝑙 ∫ 𝑁𝑖

𝜙 − 𝜙𝑛

Δ𝑡
ℬ𝑒

+ ∇𝑁𝑖 ⋅ 𝒒 𝑑𝑉 −  ∫ 𝑁𝑖  𝑞̅ 𝑑𝐴

𝜕ℬ𝑒

−  ∫ 𝑁𝑖  𝑓𝜙 𝑑𝑉 =̇ 0

ℬ𝑒

(5) 

 

 

The operator 𝑨 symbolizes the assembly of all element contributions at the element nodes 𝑖 = 1, … , 𝑛𝑒𝑛 to 

the residual at the global node points 𝐼 = 1, … , 𝑛𝑛𝑑. ℬ denotes the element domain, and 𝜕ℬ𝑒 is its boundary. The 

above system is solved at each time instance using a Newton-Raphson iteration, for which one also needs the derivative 

matrix:  

 

 

𝜕𝜙𝑗
𝑅𝐼

𝜙
= 𝑨𝑒=1

𝑛𝑒𝑙 ∫(𝑁𝑖
1

Δ𝑡
 𝑁𝑗

ℬ𝑒

+ ∇𝑁𝑖 ⋅ 𝑑∇𝜙 𝒒 ⋅ ∇𝑁𝑗 − 𝑁𝑖  𝑑𝜙𝑓𝜙𝑁𝑗) 𝑑𝑉 (6) 

 

 

The iterative updates for the Newton-Raphson scheme are then calculated: 

 

 

𝜙𝐼
𝑘+1 = 𝜙𝐼

𝑘 − ∑[𝜕𝜙𝐽𝑅𝐼]
−1

𝑅𝐽(𝜙𝑘)

𝐽

, (7) 

 

 

or in the vector form: 

 

 

[

𝜙1
𝑘+1

𝜙2

⋮
𝜙𝑛𝑑

] = [

𝜙1
𝑘

𝜙2

⋮
𝜙𝑛𝑑

] − [

𝜕𝜙1𝑅1 𝜕𝜙2𝑅1 … 𝜕𝜙𝑛𝑑𝑅1

𝜕𝜙1𝑅2 𝜕𝜙2𝑅2 ⋯ 𝜕𝜙𝑛𝑑𝑅2

⋮ ⋮ ⋱ ⋮
𝜕𝜙1𝑅𝑛𝑑 𝜕𝜙2𝑅𝑛𝑑 … 𝜕𝜙𝑛𝑑𝑅𝑛𝑑

]

−1

[

𝑅1
𝑘

𝑅2

⋮
𝑅𝑛𝑑

] . (8) 
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   The constitutive equations for the source terms 𝑓𝜙 and 𝑓𝑟 are defined for distinct cell types, since the profile of the 

action potential and individual excitation characteristics can be quite different for different cell types. The pacemaker 

cells are taken to be of FitzHugh-Nagumo type, and their action potentials are modeled via the corresponding source 

terms. On the other hand, the heart muscle cells are modeled by the Aliev-Panfilov equations with the appropriate 𝑓𝜙 

and 𝑓𝑟 (Equations 1 and 2). The recovery variable 𝑟, is treated as a local variable, and a simple local Newton-Raphson 

method is applied to the finite difference discretized equation for each of the element node at each time. 8 

 

 

3. The Numerical Scheme 

For the computational model, the spatial distribution consists of a square-shaped flat cardiac tissue divided into 21x21 

elements. The central element corresponds to oscillatory pacemaker cells, modeled by the FitzHugh-Nagumo 

equations, while the rest of the elements represent heart muscle cells and are modeled by Aliev-Panfilov equations. 

The overall solutions algorithm is as follows. 
 

 

Initialize ϕ[0], r[0]  
for n=0 to N do 

 ϕ[i]  ← ϕ[n,i] 
 r ← r[n] 
 while |Rϕ|>Tol do 

  while |Rr|>Tol do 
   r ← r-[∂rR

r]-1Rr 
  compute ∂ϕR

r, dϕr, f
ϕ, dϕf

ϕ, ∂ϕR
ϕ 

  ϕ ← ϕ-[∂ϕR
ϕ]
-1
Rϕ 

 r[n+1] ← r 
 ϕ[n+1,i] ← ϕ[i]  
 

The algorithm presented by the pseudocode above is implemented in Python using NumPy. The residual and its 

derivatives for the central element are computed using FitzHugh-Nagumo source terms, while for the rest of the 

elements, Aliev-Panfilov source terms are used. The boundary values on the external boundary of the square are of 

vanishing Neumann type. Functions such as residual_phi and residual_r and their partial derivative matrix 

calculations are called via the main algorithmic loop and evaluate 𝑅𝜙 and 𝑅𝑟  at each element-level node. The double 

integrals and various gradients of the shape functions as well as the test values for 𝜙 have been evaluated numerically 

using MATLAB and are provided as a matrix input in the computation to minimize computational time and optimize 

the Newton scheme (Figure 3). 
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for n in time: 
    R_phi_global = np.ones((global_matrix_size,1)) 
    Tol = np.ones((global_matrix_size,1))*tol 
    phi_global=phi_global_time[:,(n-1)] ##using the 'passed' phi_global frm previous time 
    while sum(abs(R_phi_global)) > sum(Tol): 
        print('The residuals have not passed tolerance. Recalculating...') 
        phi_step[n]+=1 
        phi[n,:] = f.global_to_element_21x21(np.zeros(1764),phi_global) 
        for z_d in np.arange(0,1761,4): 
            nodes = [z_d,(z_d+1),(z_d+2),(z_d+3)] ##assign node values & print variable 
            (r,R_phi,p_phi_R_phi)=element_calcs(nodes,R_phi,p_phi_R_phi,phi,r,n) 
 
            ##FHN element 
            if z_d==880: 
                nodes=[z_d,(z_d+1),(z_d+2),(z_d+3)] 
                k=min(nodes) 
                for j in [0,1,2,3]: 
                    r[n,(j+k)] = f.r_FHN(r[(n-1),(j+k)],phi[n,(j+k)]) 
                    R_phi[j+k] = f.residual_phi_FHN(j,phi,r,nodes,n) 
                    for m in [0,1,2,3]:  ##partial derivative matrix 
                        p_phi_R_phi[(m+k),(j+k)] = f.partial_derivative_phi_R_phi_FHN(j,m,phi,r,nodes,n) 
 
        ##assembling 1764 element nodes to 484 global nodes 
        (R_phi_global,p_phi_R_phi_global)=f.element_to_global_21x21(R_phi, p_phi_R_phi) 
         

##Newton's iteration for phi 
        phi_global=phi_global-np.matmul(np.linalg.inv(p_phi_R_phi_global),R_phi_global) 
        print('This is the maximum value of the residual for the current iteration: ' 
              + str(max(abs(R_phi_global)))+'.') 
        phi_global.shape=(global_matrix_size,) ##makes shape compatible for matrix update 
        phi_global_time[:,n]=phi_global ##updates global phi matrix for time loop 

Figure 3. Finite Element Method algorithm implementation in Python 

 
Suppose one would want to solve this system for 10-time steps. The algorithm first assumes a 𝜙 value for each 𝑖 node 

in the element-level system for each time step. Suppose this value is zero for each node for 𝑡 = 0 in an element 

characterized by Aliev-Panfilov-type cells, and a given non-zero value for each node in an element characterized by 

FitzHugh-Nagumo-type cells. For the ‘FitzHugh-Nagumo-element’ the residual and derivatives for this element are 

computed separately from Aliev-Panfilov-type cells using appropriate source term equations for the same time step. 

Similarly, for the rest of the nodes, the algorithm computes values for the residual and the associated values of 𝜙 and 

𝑟 required for their Newton iteration, such as: 𝜕𝜙𝑅𝑟 , 𝑑𝜙𝑟, 𝑓𝜙, 𝑑𝜙𝑓𝜙 , 𝜕𝜙𝑅𝜙. This implies that the numerical scheme 

evaluates each value at the element level in a system of 1764 element nodes (4 per element) and 484 global nodes for 

a 21x21 mesh. Finally, to run the Newton iteration for 𝜙, the element nodes are assembled into global nodes using 

simple loops in an element-to-global assembly function. Then, the scheme proceeds with the Newton iteration for 𝜙 

in the global system which is then recorded as the value of 𝜙 at each of the node at the 𝑛 + 1 time instance. 

 

 

4. Results  
 

The working algorithm in Python and associated functions and matrices used in MATLAB are available online at 

https://github.com/zahramansoor/pyrhythm/. There are some limitations with the current algorithm and 

its output values for the membrane potential 𝜙 and associated recovery variable 𝑟. Considering the algorithm does not 

work through a ‘black box’ PDE or finite element solver, the challenges in building such algorithms lie in 

understanding and executing the mathematical model via a computationally accurate and robust method.  
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Figure 4. Single central pacemaker element of FitzHugh-Nagumo-type exciting the remainder of a square ventricular 

tissue block of Aliev-Panfilov-type through isotropic conduction for (from left to right) 𝑡 = 0.005, 𝑡 = 0.006, and 

𝑡 = 0.007. Heatmap shows dimensionless 𝜙 values. Asymmetric distribution of potential and accumulation 

compared to expected results are observed. 

 
   While the Python code provides a robust computational paradigm, the 21x21 test case leads to deviations from the 

expected results (Figure 4). 8 A larger lattice will be needed to get more realistic values, though the generalization is 

straightforward. This work centered around building the computational paradigm, which can be generalized to larger 

lattices and more general geometries in straightforward ways 

 
 

5. Future Work 

This paper pursued the goal of building a computational model for the cardiac action potential, implemented in an 

open-source environment. The model is computationally inexpensive and robust. Although the finite element-based  

algorithm described in this paper operates in isotropic conditions of media and does not account for many 

electromechanical phenomena of myocardial fiber orientation and mechanics, using appropriate generalizations can 

lead to a significant expansion of this phenomenological model to anisotropic conditions, which can also be used to 

examine spiral wave re-entry. A similar finite element scheme can also be applied to biologically-relevant ionic models 

for studying the action potential and can be further modified to incorporate optogenetic interventions. 9 

 

Figure 5. Principle of optogenetics in neuroscience. Targeted excitation (as with a blue light–activated 

channelrhodopsin) or inhibition (as with a yellow light–activated halorhodopsin), conferring cellular specificity and 

even projection specificity not feasible with electrodes while maintaining high temporal (action-potential scale) 

precision. Adapted from Deisseroth, 2011. 10 
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   Optogenetics — the precise interrogation, stimulation, and control by light of excitable tissue, genetically altered 

to become light‐ sensitive rooted in spatial-temporal studies in neuroscience — is being slowly and successfully 

integrated into the study of cardiac morphologies (Figure 5). Optogenetic markers inserted into embryonic stem cells 

is gaining recognition as a research outlet with a prolific future in cardiac medicine. 11 Light‐ sensitive cardiac cells 

have been proposed to be used as gene or cell therapy and as an alternative to implantable pacemakers and 

cardioverters/defibrillators. Such therapies have significantly expanded the scope of addressing cardiac pathologies 

as well. 12 With the use of computer simulations, coupling optogenetic control of cardiac cells by growing light‐
sensitive cardiomyocytes and modeling cellular and ionic behavior is theoretically possible. 13 The initial Hodgkin‐
Huxley model — a coupled system of four ordinary differential equations — and further improvements, such as the 

Luo-Rudy model, can be successfully adapted for such a task. 14,15  
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