
Proceedings of the National Conference 

On Undergraduate Research (NCUR) 2018 

University of Central Oklahoma 

Edmond, Oklahoma 

April 5-7, 2018 

 

Recommending Recipes: A Data Enabled Framework 
 

1Omar Taylor, 1Souparni Agnihotri, 1Yazan Okasha, 2Charlie Hubbard, 1Chinmay Hegde 
1Electrical and Computer Engineering Department 

Iowa State University 

Ames, IA 50011, USA 

 
2Hy-Vee Innovation Center 

Grimes, IA 50111, USA  

 

Faculty Advisor: Dr. Chinmay Hegde 

 

Abstract 

 
Recommender systems apply prediction algorithms and data science techniques to predict user’s interest in various 

products and services. To implement the recommender system, we developed a recipe recommendation software 

application called PotLuck which is built with node.js, Python, Java, and MongoDB. PotLuck provides users with the 

tools to make and rate recipes and a list of recommendations is made using content-based filtering, which is implemented 

using TF-IDF and cosine similarity. Once user preferences were acquired, we implemented collaborative filtering and 

researched matrix completion techniques of finding the average, median, soft impute and SVD impute to account for the 

sparsity of our data. Moreover, various clustering methods are performed on the non-sparse matrix and some similarity 

measurements are made to test the effectiveness of the matrix completion and clustering methods on the recommender 

system. The results showcase that a particular type of preprocessing and clustering technique works well with our PotLuck 

data. 

 
Keywords: Recommender systems, data mining, content-based filtering, collaborative filtering, matrix completion. 

 

 

1. Introduction 
 
Ever since the rise in technology, data has been ever-increasing as more and more users put information on the internet. 

There is a need to process this information in a fast and efficient manner so that the relevant information can be processed 

and utilized for human needs. One of the most successful information processing technologies that have been developed 

is the Recommender System. It can be described as a personalized information filtering system that uses information 

provided by the user to predict the ratings or preference that user would give to an item.  

   Over the years, various approaches for building recommender systems have been explored. Two of the main approaches 

are content-based filtering (computing similarities between items) and collaborative filtering (computing similarities 

between users); both of which have seen successful implementations in information filtering and e-commerce 

applications. In this paper, we focus on the user-based, collaborative filtering approach towards building a recommender 

system as well as matrix completion methods to combat the problem of sparsity for that system. 

 

 

2. Overview or Background 
 

2.1 Content-Based Filtering 
 
Content based filtering relies on the specific content of the item as well as a specific user’s preference to make 

recommendations. In this kind of system, the keywords used to describe an item are matched to the kind of items described 

on a user’s profile using some similarity metric.  

   There are several issues to be considered while building a content-based filtering system. First, terms can either be 

assigned automatically or manually. Terms can be typically the words that appear in the document. When terms are 

assigned automatically a method has to be chosen that can extract these terms from items. Second, the terms have to be 

represented such that both the user profile and the items can be compared in a meaningful way. Third, a learning algorithm 



747 
 

has to be chosen that is able to learn the user profile based on seen items and can make recommendations based on this 

user profile. 

   Pandora Radio is a popular example of a content-based recommender system that plays music with similar 

characteristics. In the movie recommender systems arena, Rotten Tomatoes, Internet Movie Database, and Jaman are 

popular examples.  

 

2.2 Collaborative Based Filtering 

 
A traditional collaborative filtering algorithm represents a customer as an N-dimensional vector of items, where N is the 

number of distinct items. The algorithm generates recommendations based on a few customers who are most like the user. 

Collaborative based filtering methods can be computationally expensive. It is O(MN) in the worst case where M is the 

number of customers and N is the number of product items. As a result, scalability can be a big issue in these types of 

systems.  

   Big content providers like Netflix and online shopping giant, Amazon, all use collaborative filtering as a means of 

making recommendations.   

 

 

3. Research Focus 
 

The motivation behind our research is attempting to gain a solid understanding of recommender systems. We 

do this through a web application named Potluck. Potluck is a web and mobile software application that 

recommends recipes to users based on recommender system models. To recommend recipes to users, the web 

application is split into two main components: the front-end and the back-end. As we see in the diagram below, 

we can see a high-level overview of the application. The client facing application passes information to the 

back-end which contains some functions which are used to generate recommendations. Once recommendations 

are generated they are sent back to the front end.  
 

 

Figure 1: High level diagram of the system 

 

The front-end acts as the main web app allowing users to log in, view recipes etc. The front-end has a significant 

contribution in collecting data. The data collected is from recipes displayed to users and users rating them. We can see 

that the data collection implementation is quite important as it will power our recommender system.  

   The backend will receive the collected data and feed it to a model which trains on the data. After the training phase, the 

backend can recommend recipes. But before that, the backend has already built a model to recommend recipes based on 

content-based filtering. The model consists of running TF-IDF on the recipe meta-data and finding the most similar 

recipes. Before we go into detail on the algorithm we will introduce TF-IDF and cosine similarity.  

 

 

 

 

 



748 
 

 

3.1 TF-IDF 
 

TF-IDF[1] or Term Frequency-Inverse Document Frequency is an algorithm for converting documents of words into 

vectors. TF-IDF is popular since it will attempt to extract important words from the strings. It does so by giving the 

important words high weights and the common words a low weight.  

   To find and assign weights, we must find the importance of the word. This is done through Term Frequency, which is 

simply counting the number of times the word is repeated in the document. The importance is a little flawed right now 

since common words, such as “and” or “the”, are very common and will have a high count. Inverse Document Frequency 

will now account for this, which counts the number of documents that contain the word and a little more described below. 

For more details refer to [1]. 

 

3.2 Cosine Similarity 
 

The cosine similarity is a popular and common similarity measure of 2 vectors of d dimensions, where d is an arbitrary 

integer. The rule derives from the dot product of two vectors, A and B  where we get the angle between the two vectors 

as:   

 

 

 
 

 
This is a powerful tool that allows us to find the similarity between two vectors. It can be used in many applications and 

in our case it is used in our content and collaborative based filtering algorithms.  

 

3.3 Content-Based Filtering Algorithm 
 

Our content-based filtering algorithm uses the TF-IDF vectors and the cosine similarity concept mentioned above. Our 

data was in the form of a JSON string containing all of the metadata acquired from the Spoonacular API. We used the 

ingredients list of all of the recipes to compute the similarities. First, the ingredients of each recipe were converted into 

its vector form using TF-IDF. This resulted in having a massive array of TF-IDF vectors for the ingredients corresponding 

to each recipe. We then performed cosine similarity on each recipe corresponding to every other recipe. We then outputted 

the top-k similar recipes for each recipe in our database, where k was an arbitrarily chosen number. This helped us come 

up with the initial set of recommendations which we could show the user on PotLuck. 

 

 

4. Research Aim 
 

No two data sets are the same. The same algorithm can perform differently on different data. Having been exposed to 

several clustering methodologies in class, our main research goal was to explore how well these methods worked with 

the data that we had gathered from PotLuck. We were particularly interested in how various matrix completion methods 

affect the data and the ways it is being clustered. Our final goal was to come up with a quantitative analysis of the accuracy 

of the different clustering methods when performed with various matrix completion methods, in order to give a detailed 

analysis of which method to adapt for our data.  

 

 

5. Research Methodology 
 

As mentioned above, we want to perform collaborative based filtering on the data we have collected. It is important to 

note that our data is unlabelled, it only contains user’s ratings for a given recipe. So it will be difficult to perform a 

supervised learning technique, even though supervised learning techniques are popular and have large amounts of research 

behind them. Once we have the data, we need to fill in missing values in our data. Once that is complete we intend to 

perform three common unsupervised learning techniques on our data and test the performance.  The algorithms are K-

means, Spectral and Hierarchical Clustering respectively. First, we will introduce the algorithms in more detail before 

moving forward. 

 

 

 

 

 



749 
 

 

5.1 Clustering 
 

5.1.1 k-means clustering 
 

K-means clustering is a popular clustering technique proposed by Hartigan (1975)[2]. The popular clustering technique 

is based on clustering n data points into k clusters. A proper formulation is given below:  

 

Given our data points , we assume that they are initially clustered into disjoint sets .  

 

We can find the mean in the following manner,  

 

Assuming that we have the correct , our optimization problem reduces to – 

 

min which can be thought of as a Nearest Neighbor Problem.  

 

For each . the optimal cluster for it  is:  

 

One simple algorithm which makes use of this is Lloyd’s algorithm [3]. Which is defined below:  

 

 
 

 

 
 

 
 

 

5.1.2 spectral clustering 
 

Spectral clustering treats clustering as a graph partitioning problem without making assumptions about the form of the 

clusters. Spectral clustering clusters together points using the eigenvectors of the matrices derived from the data. Unlike 

K-means, spectral clustering does not require the data points to be in convex boundaries. This is one of its main 

advantages, in addition to being easy to implement and being reasonably fast on sparse datasets. However, spectral 

clustering may be sensitive to the choice of parameters and may be computationally intensive on large datasets. 

More information on Spectral Clustering and the algorithm can be found in the paper referenced. [4] 

 

5.1.3 hierarchical clustering 
 

Hierarchical clustering is another popular clustering technique which assumes that there is a tree structure to collected 

data. Building on the assumption, Hierarchical clustering splits the data set into singleton sets and groups sets iteratively 

based on a user-defined constraint. In our case, we want to minimize the distance for each grouping. We can define the 

distance between two sets in many ways, but in our research,  we defined it to be the ward distance [5]. Ward’s distance 

will attempt to minimize the total within-set variance by finding a way to calculate the distance between two sets.  

   After talking about clustering algorithms, we need to fill in missing data since our data has large quantities of missing 

values.  

 

5.2 Matrix Completion 
 

5.2.1 SVD impute and soft impute 
 

The SVD Impute [7] algorithm is a matrix completion algorithm that uses the properties of SVD to estimate the values of 

the matrix. It does so by initializing missing entries by a weak estimate then iteratively improving upon the estimate. For 

more details on the algorithm please refer to the [7].  

   The Soft Impute[6] algorithm is a common and effective algorithm which attempts to fill in missing of a matrix. 

However, it assumes that the true matrix rank must be low. This is a fair assumption since human taste can be classified 



750 
 

into a small number of classes. The Soft Impute algorithm attempts to optimize the error between the true matrix and 

original matrix.  

 

 

 
 

 

Where  is the observed matrix,  is the true matrix and  is the error constraint. To optimize this problem, Soft Impute 

makes use of SVD Impute and iteratively arrives at a solution. For more details please refer to [6].  

 

5.3 Testing 
 

The effectiveness of the various matrix completion and clustering algorithms were tested by simply computing cosine 

similarity on the clusters obtained. The process we followed was to trace back the recipes in each cluster. From each 

cluster, we traced back and found the set of all recipes that the users in that cluster liked and a set of all recipes that they 

disliked. From that, we obtained the ingredients of each recipe and performed TF-IDF on them to transform them into 

vectors. Cosine similarity was then computed on these vectors to find a quantitative measure of the similarity of these 

recipes.  

 

For example, let’s say we had 7 users and they were clustered into 3 clusters. 

 

Clustering output:  

 

This shows that user 1 was clustered into cluster 1, user 2 into cluster 1, user 3 into cluster 3… and so on.  

   Then we trace back to find all of the users in each cluster, and a list of the recipe ingredients that each user liked or 

disliked.  

   We pass the list of the ingredients that the users liked into the cosine similarity measures to get a quantitative measure 

of how closely related the ingredients are. The same thing is done for the list of dislikes. This helps us analyze how well 

our clustering methods worked for each matrix completion algorithm.  

   Our testing results are outputted as a list of tuples where each tuple represents the cosine similarity measure of the 

recipes liked and disliked in each cluster.  

 

Cosine similarity output:  

 

 

6. Data Collection And Results 
 

In the data collection phase, we used python and its packages (sklearn, Scikit) for our implementation. The data that was 

in MongoDB was extracted using mongoexport. The specific information we extracted was the user ratings and the unique 

user IDs. Then the data was formatted into a matrix which was m X n dimensional, where m represents the users and n 

represents the recipes. Each entry in the matrix contained either a 0 or 1 or ‘?’. The ‘?’ represented the empty data - the 

recipes that the users had not rated. The next task was to fill up this data which we did using the following four algorithms: 

 

Mean - The first algorithm was averaging over the columns, which would essentially iterate over all the missing entries 

(i,j) and replace the ‘?’ with the average of the jth column.  

 

Median - This involves simply taking the median over the columns. Each missing entry (i,j) is replaced with the median 

of the jth column.  

 

SoftImpute - Algorithm for softImpute is provided in part 5.2.1. The same algorithm was used to fill in the missing data 

 

SVDImpute - Using the algorithm described in 5.2.1 we extracted the estimated value of our matrix X. Then once we 

have  we can rebuild the matrix X using these matrices such that now we do not have any missing values in our 

matrix.  

 

Using all of the algorithms described above, our data matrix X was made non-sparse and we began clustering. The 

following parameters and constraints were used for certain clustering measures: 

 

For K-means, the value of ‘K’ was 6.  

 

Wards distance was used as our distance measure for hierarchical clustering and we stopped at 8 clusters. 



751 
 

The graphs below represents the data collected: 

 

 

 

Figure 2: A comparison of the performance of the different matrix completion measures - mean, median, SVD Impute 

and Soft Impute on the different clustering methods - K-means, Hierarchical and Spectral clustering specifically for all 

of the items that the users “Liked”. 

 

 

 

Figure 3: A comparison of the performance of the different matrix completion measures - mean, median, SVD Impute 

and Soft Impute on the different clustering methods - K-means, Hierarchical and Spectral clustering specifically for all 

of the items that the users “DIsliked”. 

 

The numbers on the bars represents the average cosine similarity score obtained across all the clusters by each of the 

clustering algorithms.  

 

 

7. Data Analysis 
 

From our results, we can see that our average similarities are quite high. This can be due to several factors. The matrix 

completion methods used indicate that SVD and soft impute work best with K-means clustering, giving an average “like” 

similarity of greater than 95%. However, there is a discrepancy in the similarity results obtained for the “dislikes”, which 

is almost 10% lower than the “likes” similarity scores. The reason for this discrepancy is because we don’t have many 



752 
 

data points and we have a large number of missing entries. Intuitively, we should have a much lower accuracy than our 

current data, but due to sparsity, we are getting very high similarity scores.  

   It is also interesting to note that the mean and median methods adopted for the matrix completion gave more consistent 

results overall than SVD and soft impute. This is because each column in the matrix was filled with the same value of the 

mean or median of that column whereas each value would differ in the SVD and soft impute methods. This also leads to 

the conclusion that both SVD and soft impute resulted in better estimations than did the mean or median methods.     

   We must remember that we are comparing recipes against each other to get our similarity measure. We must convert 

our ingredients into TF-IDF vectors and when we do, we get a high dimension vector with many 0s and a small amount 

of 1s. So, when comparing two vectors, most of the values compared will be the same and only a few values will differ 

resulting in a high similarity value.  

   In addition, our results would be more accurate given more users and ratings. The larger the user-rating matrix, the 

better the accuracy of our computations.  

 

 

8. Conclusion 
 

This report presented some of the algorithms used to build collaborative filtering based recommender systems. It is 

important to note that each algorithm and methodology used has its advantages and disadvantages. User-based algorithms, 

in general, are accurate but not scalable. We mainly focused on finding ways to improve the performance and accuracy 

of our algorithms by exploring different matrix completion methods that we can use on our data and how well each 

completed matrix worked on different clustering algorithms.  

   In conclusion, we believe that adopting one of the matrix completion and clustering methods into our PotLuck 

recommendation system, we will be able to give better recommendations to our users.  

 

 

9. Future work  
 

In the future, we plan on improving our recommender system by combining both our content-based filtering algorithm 

and our collaborative based filtering algorithm together. To do this, we must first decide which clustering algorithm we 

want and which matrix completion algorithm to use.  

   We also plan on experimenting more with matrix completion algorithms. Either by adapting the soft Impute algorithm 

or by combining two algorithms together.  

   Lastly, in order to obtain more accurate results, we need more user data.  

 

 

10. Acknowledgements 

 
This work was supported in part by grants from the National Science Foundation and NVIDIA, and start-up grants from 

the College of Engineering and the Office of the VPR at Iowa State University. 

 

 

11. References  
 

1. John Ramos. “Using TF-IDF to Determine Word Relevance in Document Queries”. Rutgers University  

2.  Hartigan, John A. “Clustering algorithms”. New York, NY: Wiley, 1975. 

3.  Lloyd, Stuart P. “Least squares quantization in PCM”. 1982. IEEE Transactions on Information Theory. 

4.  Ng, Andrew. Jordan, Michael. Weiss, Yair. “On Spectral Clustering: Analysis and an algorithm”.  

5.  Joe H Ward.”Hierarchical grouping to optimize an objective function”. Journal of the American Statistical 

Association.  

6. Rahul Mazumder, Trevor Hastie, Robert Tibshirani. “Spectral Regularization Algorithms for Learning Large 

Incomplete Matrices”.  

7.  Troyanskaya O et al. “Missing value estimation methods for DNA microarrays”.  

8. Content-based filtering, “recommender-systems.org/content-based-filtering/’. Date of access, 16 April 2018 

9.  Spectral clustering, “cvl.isy.liu.se:82/education/graduate/spectral-clustering/SC_course_part1.pdf”. Date of access, 

16 April 2018 

http://recommender-systems.org/content-based-filtering/
http://www.cvl.isy.liu.se:82/education/graduate/spectral-clustering/SC_course_part1.pdf

