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Abstract 

 
Experimentally testing post-Einstein theories of gravity is imperative for bridging the gap between quantum mechanics 

and general relativity. Precisely measuring the distance from the Earth to the Moon through lunar laser ranging (LLR) 

is a leading way to test these new gravitational theories, and millimeter precision LLR is currently conducted by the 

Apache Point Lunar Laser-ranging Operation (APOLLO). This project proposes a computational model of the Solar 

System to which APOLLO’s experimental data can eventually be fit. Making this computational model requires a 

variety of considerations, including choice of numerical integration techniques, model simplifications to ensure early 

editions of the model are running correctly and efficiently, and fitting methods to find an ideal set of parameters and 

gravitational theories that work best with a given set of data. In the process of creating this model, comparisons are 

made to the Planetary Ephemeris Program (PEP), the only open source model of the Solar System known to produce 

LLR observables, accurate to a centimeter. In addition to serving as a platform to learn about the Solar System and 

lunar range modeling techniques, this work opens the possibility to expand the scope of relativistic gravity tests beyond 

the current capabilities of PEP. The current model is precise to 40 microns for simple models of the Solar System. In 

the future, the model will be extended to introduce more complex factors that influence the lunar orbit in order to 

achieve agreement within a millimeter of experimental APOLLO results and to assess post-Einstein relativistic gravity 

theories.  

 

Keywords: Lunar Laser Ranging, Computational Model, General Relativity 

 

 

1. Introduction 

 
Lunar laser ranging (LLR) is a technique of measuring the launch and receive times of a series of electromagnetic 

laser signals from an observatory on Earth to one of five corner cube retroreflectors on the Moon and back. These 

timing measurements translate to range estimations, allowing the mapping of the lunar orbit over time. The corner 

cube reflectors that reflect the laser directly back to its source were installed first by astronauts on the Apollo 11 

mission and subsequently by the Apollo 14 and 15 missions, as well as by two unmanned Soviet rovers. 

   Even though Einstein’s theory of general relativity is fully consistent with existing experimental constraints, there 

are theoretical reasons to suggest that it might not be complete. General relativity is incompatible with quantum theory, 

a theory that describes the nature of matter and energy at the atomic and sub-atomic level.  Of the four known 

fundamental forces of nature, general relativity has the weakest constraints. This, on top of the unification of all forces 

but gravity, suggests that our understanding of the gravitational interaction needs to be revised. 

   LLR data plays a key role in informing our understanding of gravitational interactions. Its unprecedented levels of 

precision offer a way to discriminate between different gravitational theories at an exceptional level of precision. 

   Since eight days after the completion of the Apollo 11 mission, scientists have been collecting lunar ranging 

measurements. To date, an archive of LLR data spanning 49 years is available. The first accurate laser ranging 
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measurement was done on August 1, 1969, at the Lick Observatory using a 3.0-meter telescope.1 Currently, the Apache 

Point Observatory Lunar Laser-ranging Operation (APOLLO) at the Apache Point Observatory in southern New 

Mexico uses a 3.5-meter telescope to measure this transit time with an accuracy of a few picoseconds. This translates 

to an accuracy of a millimeter in the measured lunar distance.  

 

1.1 The Need For A Computational Model 

 
In order to extract gravitational physics constraints from LLR data, it is necessary to have a computational model that 

simulates an understanding of gravitational interactions. In constructing this model, all factors that affect the lunar 

orbit should be taken into account. These factors include the gravitational influences of the Earth, the Sun, other 

planets in the solar system, and the moons of those planets. Table 1 shows the magnitude of the influence of the solar 

system planets and Pluto on the lunar orbit.  Additionally, lunar librations, surface deformities of both the Earth and 

the Moon, and the precession of the Earth, which is the movement of the Earth’s axis of rotation, should be taken into 

consideration. Since such a system is too complicated to solve analytically, a computational solution is necessary.  

  

Table 1. The influence of solar system planets (other than the Earth and the Sun), and Pluto on the lunar orbit. 

 

Perturbing Object Venus Jupiter Mars Mercury Saturn Neptune Uranus Pluto 

Lunar Perturbation 

(mm) 

260000 26000 11000 2000 900 15 14 0.004 

 

   There are several existing LLR models including those housed at the Harvard-Smithsonian Center for Astrophysics 

(Planetary Ephemeris Program (PEP)), at the Jet Propulsion Laboratory (Jet Propulsion Laboratory Development 

Ephemeris (JPL DE)), and at the Leibniz University in Germany.2,3,4 Of these models, only PEP is open source. 

   Over the years, there have been improvements in the experimentally measured distance due to improved telescopes, 

enhanced timing electronics, and specifically with APOLLO, a particularly large photon return rate. However, there 

exists a non-zero disparity between the precision of the experimentally measured distance and its model. Figure 1 

shows the change over time of the root-mean-square (RMS) residuals between the data and model. 

 

 
 

Figure 1: Evolution of the RMS of the residuals between the measured and modeled distance. The residual RMS 

is due to errors in both the data and model.  Each point on the graph is the RMS of the residuals for one year.  

 

1.2 Planetary Ephemeris Program (PEP) 

 
Designed in the 1960s, PEP is written in Fortran 77. Due to the code structure, incorporating relevant physical 

discoveries made after its construction, such as the presence of dark matter and dark energy, into PEP is a difficult 

task. Additionally, PEP is accurate at the ~1 cm level. This means it is not able to take full advantage of the 

millimeter precision of the experimentally measured ranging distance.  Furthermore, PEP also has an arcane 

interface making it unfit for use in an undergraduate context. 
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   As a way to learn more about ephemeris modeling, and with the goal of creating a flexible analysis framework 

capable of exploring new ideas in gravitational physics, we have begun the development of a solar system 

ephemeris with a more modern and user-friendly interface. Following PEP, this model has the possibility of being 

open source. 

 

 

2. Phases of Creating a Computational Model 

 

2.1. A Simple System 
 

The model presented here was developed progressively and remains a work in progress. The initial model was a 

simple three-body system that only modeled the motions of the Earth, the Moon, and the Sun. It used Newtonian 

gravity, and all three bodies were treated as perfect spheres, meaning they could be simulated as point particles. 

The purposes of this simple system were to develop a precise, accurate integrator and a working fitting technique. 

The former was tested by comparing the model's results to a PEP run with the same modeling techniques of 

Newtonian gravity and three perfectly spherical bodies.  

 

2.1.1. integrators 
 

The initial integrator used was the Fourth Order Runge-Kutta Method.5 This method is essentially a refined Euler 

method. It evaluates a derivative at an initial point, twice at midpoints, and once at the end of an interval. It then 

takes a weighted sum of the results to better approximate a final solution. This is shown in figure 2. However, for 

this model, it became apparent that Fourth Order Runge-Kutta could not achieve the desired levels of accuracy in 

a reasonable amount of time. Instead, the integrator was changed to the Bulirsch-Stoer Method.6 This integrator 

uses an adaptive step size and error control through polynomial extrapolation. Although much more advanced in 

its technique, Bulirsch-Stoer is more efficient than the Fourth Order Runge-Kutta Method. For this simple three-

body system, a 1-meter level agreement on the Earth-Moon distance with PEP over 6000 days is achievable in 

only 90 seconds with Bulirsch-Stoer. In comparison, such an agreement with the Fourth Order Runge-Kutta 

method took 250 seconds. 

 

 

 

 

 

 

 

 

Figure 2: The Fourth-Order Runge-Kutta Method. The function being solved for is 𝑓(𝑥), and its derivative is 

𝑓′(𝑥). The step size is given by ℎ. 

 

2.1.2. precision 

 
In order to properly utilize APOLLO's millimeter-accurate lunar laser ranging data, further levels of precision 

were explored. Because Python uses 64-bit floats, its default precision is limited. In comparison, PEP uses 128-

bit quadruple-precision from Fortran 77. To reach a precision closer to PEP, methods of extended precision in 

Python were explored. First, NumPy's long double data type was implemented.7 This long double data 

type is from most C compilers, and on x86 machines, it is represented with 80 bits. This provides a few more 

decimal digits of precision, and this extra precision is evident in 6000-day comparisons with PEP. For example, 
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such a comparison using NumPy's long double data type was able to achieve agreement with PEP (as defined 

above) to 1 millimeter. 

   The mpmath package in Python was also explored.8 This package allows for arbitrary precision, meaning that 

using mpmath would allow for the model's precision to be adjusted depending on the needed accuracy of the 

result. Additionally, mpmath is compatible with NumPy, so mpmath was easily implementable. Once it was 

implemented, we were able to find that 21 decimal digits of precision gave the least disagreement with PEP, as 

shown in figure 3. Although PEP's 128-bit floating point representation corresponds to about 30 decimal digits of 

precision, PEP's output only prints 19 digits. Accounting for additional accuracy needed for the integrator, it 

makes sense that comparisons between this model and PEP's output would reach a minimum slightly above PEP's 

number of printed digits. However, this simulation in mpmath takes much more time. For 20 precise digits, a 

6000-day simulation took about 50 minutes, whereas simulations with the long double data type take 2 

minutes. In later versions of the model, varying data types were used depending on the wanted precision of the 

final result. 

 

 

 

 

 

 

 

 

 

Figure 3: The maximum disagreement between PEP and this three-body model over 6000 days in millimeters, 

plotted as a function of the number of precise decimal digits in the newly developed simulation. 

 

2.1.3. results 

 
On the macro level, this simple three-body model performed well. In the distance versus time graph shown in 

figure 4, the Moon's osculating orbit was evident over 500 days. Additionally, when this three-body simulation 

with 20 digits of floating-point precision was compared to a similar PEP model, after 6000 days the models had 

a maximum residual disagreement of only 40 microns. This high level of agreement with PEP suggests that this 

model is an extremely precise model of the three-body Earth, Moon, Sun system with Newtonian gravity. 
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Figure 4: Distance from the Earth to the Moon in kilometers as a function of time in days. The cycles of varying 

amplitude show the variation (osculation) of the Moon's orbit over time due to the influence of both the Sun and 

the Moon. 

 

2.1.4. curve fitting 

 
In order to eventually test which theories of gravity best fit LLR data, a least-squared fitting method was 

implemented in this model.9 This fitting method will eventually implement  the Parametrized Post-Newtonian 

formalism (PPN) as well as other model assessment strategies to evaluate different theories of gravity.10 However, 

since this model currently only uses Newtonian gravity, tests of the least-squared fitting method were performed 

by comparing simulated data from our model with the model itself and fitting for parameters such as initial 

positions, initial velocities, and masses. These tests were performed on an even simpler two-body system 

consisting of the Earth and the Moon. It was discovered that although the method properly fits the model to data, 

it does not always find the correct minimum of the chi-squared function. The least-squared fitting model works 

as expected when only one parameter is being evaluated, and it works about 50% of the time when two parameters 

are being evaluated. For example, a fit for the Earth's x and y velocities resulted in the proper values. However, a 

fit for Earth's and the Moon's masses resulted in a proposed negative mass of the Moon. Constraints on the 

parameter values were implemented to try to fix this, but the resulting program could not settle on a minimum. It 

is possible that the parameters for which the model is fitting are too highly correlated to result in a chi-squared 

function with an easily-found absolute minimum. In the future, the parameter framework will be changed to 

strongly reduce the parameter correlations; specifically, Keplerian elements will be implemented for the initial 

conditions instead of the current Cartesian state vectors. PEP uses these Keplerian elements for its fit, and 

hopefully these less-dependent parameters will be fit more easily.11 

   While the curve fitting algorithm was being tested and refined, the model of the solar system was also refined 

so that it could be made more precise and accurate for when the least-squared fitting algorithm could be used 

more rigorously. 

 

2.2. Adding More Planets 

 
After the simple three-body system was shown to be accurate compared to PEP, more bodies were added to the 

model and the results were once again compared to similar models within PEP. Firstly, a simulation with five 

bodies was made. It included the Earth, the Moon, the Sun, Mercury, and Venus. Venus was included because it 

perturbs the lunar orbit the most after the Earth and the Sun, as indicated in table 1.  Mercury was also included 

because it is easily included in PEP.  This model had a similar level of agreement with PEP, showing only a 40-

micron discrepancy after a 6000-day integration with mpmath. 

   Jupiter was then added to this simulation because it also perturbs the lunar orbit greatly and because Jupiter is 

farther away from the Sun than the Earth, meaning that this model would have to deal with larger numbers than 
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before. Specifically, Jupiter is about 5 AU away from the Sun, while the Earth is 1 AU away. Therefore, adding 

Jupiter to the model means the maximum distances the model must incorporate are five times larger. This indicates 

that with the same number of precise digits as before, the model may disagree with PEP slightly more. In contrast, 

when this model was compared to PEP, a similar level of agreement was found; the numbers in the six-body 

simulation were not large enough to noticeably affect the results. The difference between PEP and this model 

over 6000 days was only 15 microns. Additionally, when the comparison was tested over 12000 days, a difference 

of 72 microns was found, as shown in figure 5. 

   Since this model is accurate with simple five and six body systems, it can be assumed that this model will also 

be accurate for an arbitrary number of simple bodies. Of course, with the added bodies, the run time of the 

simulation will increase, and if the added bodies increase the maximum distances in the simulation, a greater 

number of precise decimal digits may be required to achieve a similar level of accuracy. However, given enough 

time and enough precise digits, this model can now provide an accurate N-body point particle simulation with 

Newtonian gravity. 

Figure 5: Difference in Earth-Moon distance between this six-body model and PEP over 12,000 days. 

 

2.3. Incorporating An Irregularly Shaped Earth, Moon And Sun 

 
More recently, an irregularly shaped Earth, Moon, and Sun have been added to this model. This was achieved by 

representing the gravitational potential of the Earth, Moon, and Sun with spherical harmonics, and then by 

implementing rotation matrices for the Earth and the Moon from the frame defined by the mean equinox and 

equator to the body frames of the Earth and the Moon, respectively. These rotation matrices were implemented 

to account for the Earth and the Moon's varying shapes relative to the mean equinox and equator; in contrast, the 

Sun was assumed to be axially symmetric. 

 

2.3.1. modeling gravitational interactions with spherical harmonics 
 

It can be shown that gravitational potential outside of gravitationally attractive body must always satisfy Laplace's 

equation.12 Therefore the gravitational potential can be computationally approximated using a finite series of 

Legendre polynomials if the body in question has axial symmetry. If the body is not axially symmetric, a series 
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of Legendre polynomials and associated Legendre polynomials must be used. As the Sun was assumed to be 

axially symmetric, the former process was used to model its gravitational potential, while the latter was used for 

modelling the Earth and the Moon. PEP's analytic differentiation of gravitational potential to determine 

acceleration due to a specific body was also used (shown in figure 6), as were PEP's numeric values for the zonal 

and tesseral harmonic coefficients.13 Following PEP, the Earth's series approximation included 160 terms, while 

the Moon's included three terms. The Sun's series included two terms. 

 

Figure 6: 𝑗 acceleration components due to an approximately spherical body 𝑏. The corresponding position 

component of the body being accelerated is given by 𝑥𝑗. The first summation term gives the zonal harmonics. 𝑎𝑏  is 

the radius of the approximately spherical body, 𝑃𝑛 is the 𝑛th Legendre polynomial, and 𝜙 is the latitude of the body 

being accelerated, as viewed from 𝑏. 𝐽𝑛 is the nth coefficient. The second summation term gives the tesseral 

harmonics. 𝑃𝑛ℎ is the 𝑛th, ℎth associated Legendre polynomial, with cosine coefficient 𝐶𝑛ℎ and sine coefficient 𝑆𝑛ℎ. 

This equation uses the normalized version of these. θ is the longitude of the body being accelerated. 

 

2.3.2. implementing rotation matrices for the Earth and the Moon 

 
This model also followed PEP's analytic process for modelling the coordinate rotations of the Earth and the Moon. 

The body frame of the Earth had its origin at the Earth's center of mass, its vertical axis directed toward the Earth's 

axis of rotation, and its two other axes lying orthogonal to its vertical axis in typical Cartesian fashion.14 The rotation 

into this frame incorporated the Earth's daily rotation and the nutation, precession, and wobble of its axis of rotation. 

Unlike in PEP, the astronomical parameters required for the calculation of the rotation, nutation, and precession were 

approximated using series about the epoch J2000. These approximations were found in Astronomical Algorithms.15 

The values required for modelling the Earth's wobble were taken from PEP; however, the only data found was for the 

years 1956 through 1971. In the future, more contemporary data will be found. 

   The Moon's body frame was defined similarly to that of the Earth.16 Its origin was at the Moon's center of mass, and 

its vertical axis was parallel to the Moon's axis of rotation. The rotation into this frame accounted for the Moon's 

rotation, precession, and physical librations, as demonstrated in PEP. The astronomical parameters were approximated 

the same way as for the Earth, and the Moon's physical librations were also determined from Astronomical 

Algorithms.17 

 

2.3.3. results 
 

This version of the model has not yet been compared to PEP. However, a 1300-day simulation of this model was 

prepared and compared to the version of the model without any irregularly shaped bodies. The difference between the 

Earth-Moon distance of these models was calculated over time, as shown in Figure 7. The maximum difference was 

14 kilometers, or 0.004%. 
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Figure 7: Difference of the Earth-Moon distance between a simulation with an irregularly shaped Earth, Moon, and 

Sun and a simulation with all bodies perfectly spherically shaped.  

 

 

3. Conclusion 

 
   Currently the computational model consists of 6 bodies; i.e., Earth, Moon, Sun, Mercury, Venus and Jupiter. It 

accounts for the effects of the irregularities of the Earth, Moon and Sun in shape. It agrees with PEP to 40 micrometers 

for simple models and to 72 micrometers for a perfectly spherical 6 body system. 

   The model would be improved by accounting for the locations of the observatory on Earth and the retroreflectors 

on the Moon in the future. Moreover, it will incorporate different theories of gravitation to look for agreements to 

experimental data. 
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