

Proceedings of The National Conference

On Undergraduate Research (NCUR) 2017

University of Memphis

Memphis, Tennessee

April 6-8, 2017

Computing an Algorithm to Detect Three-Dimensional Objects in Space

Ken Ryumae

Computer Science Department

Western Kentucky University

Bowling Green, Kentucky 42101 USA

Faculty Advisor: Dr. Qi Li

Abstract

Previous work in two-dimensional (2D) data has been able to theoretically prove the existence of control points and

vertices of data shaped in a polygon based on the theory of ellipsis. A control point is a point used to maximize the

distance to other existing control points that have already been recursively defined. An example can be seen in

driving related vision recognition work, where a computer drives a car. In this work, the computer has to identify

stop signs and other signs in order to drive properly. This sign identification using vision recognition is

accomplished by looking at individual pixels in an image and identifying the contrast of the white stop sign border

or other sign border to that of the surrounding area. By finding the border, the computer is able to identify if the

picture contains a stop sign by extracting 1 and 2-piece poly-lines to create an octagon, then comparing it to actual

octagons for testing1, 2. Other signs would follow the similar vision recognition process. In a higher dimensional

space, the theoretical justification of the consistency among control points and vertices is harder, as there are not

only points limited to a single plane, but also points are found in multiple planes3. This means that there are over six

times as many possible control point locations, due to the extra planes where the points can be found on. As such,

the motivation behind this research is to find a new strategy for data clustering, based on the iterative extraction of

control points. In this paper, I propose to create a program for generating a large set of simulated data to

experimentally justify their consistency. By testing a large set of data, the program can then be improved in order to

detect objects more consistently. The research consists of two parts. The first step in this research is generating

three-dimensional (3D) data for use as test cases. To do this, we generate a set of 3D points in a pyramid shape in

the beginning, but we eventually expand to other 3D shapes. A pyramid is used because of its unique slant which

allows for easier 3D based shape recognition from various angles. By being able to find three control points on a

single plane, the use of a generalized algorithm finds the next control point. We also add some randomness to

generate point sets to test the robustness of control point extraction with respect to noise. Secondly, we implement

an algorithm for control point extraction, then for verifying the correctness visually on larger sets. By doing so, we

are able to correctly identify shapes on a 3D scale, and expand the algorithm to compensate for multidimensional

objects and shapes.

Keywords: control point extraction, simulated data, multidimensional

1. Introduction

For human beings, an object identification is usually an easy task, as we have many years of experience in learning

how to differentiate one thing from another. Even younger infants can recognize objects at 9 months old4. However,

this is very difficult for a computer. While we take almost no time in recognizing a stop sign or another sign on the

road from the surrounding area, it can take the computer significantly longer to distinguish the sign. The computer

needs to identify possible lines and see whether those lines could possibly form an octagon for a U.S. stop sign, or

202

any other known shape, and then determine whether it thinks the given image contains a stop sign, speed sign, etc.

or not.

 Recently, computer object recognition has been making significant progress in identifying two-dimensional

shapes. For identifying a shape like a triangle, the computer looks for two control points, and theoretically finds the

third point. This is theoretical because the computer is not able to check if it is completely accurate. Instead, the

computer would have to have prior information to determine whether the third point is correct. In a realistic,

practical environment, computers are now capable of distinguishing stop-signs and other signs from the surrounding

environment by analyzing images. By looking at the contrast between the white border of the sign and the

surrounding area, the computer is able to distinguish whether a stop sign exists in the picture provided.

 Other research has been done in a different way instead by looking for the exact number of sides in order to

identify the given shape. If a shape has more than three sides, but less than five, the program is able to identify that

the shape is a quadrilateral of some sorts. This kind of research is beginning to become prevalent as self-driving cars

begin to come out and be tested.

 My project takes this concept a step further by developing an algorithm in which computers distinguish objects

based on a set of three-dimensional data points, allowing for further potential of identifying objects in multi-

dimensions. This concept is quite important because ultimately these 3D object detections can be utilized in self-

driving cars, automated warehouse equipment, underwater exploration, space missions and others to prevent

collisions in real world surrounding environment.

2. Question

The purpose of this research was to see if the creation of an algorithm allowed a computer to identify 3D objects

when given a set of data points. By having the computer able to identify 3D objects, technologies like self-driving

cars and remote control mechanisms can become more aware of their surroundings, allowing them to be safer and

more reliable.

3. Rationale

To begin, I created a pyramid with three vertices on the x, y, and z-axes. I used a triangular pyramid, tetrahedron, in

these cases because objects like spheres required many data points in order to be accurate. Additionally, cubes were

too basic of shapes, as they could be easily identified with simple point calculations. As such, a tetrahedron was

used because of its unique slant where it was a better base case for testing, especially with visual inspection. By

being able to find three control points on a single plane, a generalized algorithm was made to determine the next

control point. I also added “noise” to the points to simulate more real life scenarios. The noise was added because

real data would usually never be exact integers. This was caused by small variables when collecting data. Instead,

the data was much more precise, which the noise was trying to replicate.

 Secondly, I implemented an algorithm for control point extraction, and then verified the correctness on larger sets

to visually verify the correctness by utilizing Wolfram Mathematica. By visualizing it in Wolfram Mathematica, a

user would know that the points being generated and tested correctly created the objects that were being tested. This

was also shown when no errors were produced when creating the planes for each side. Errors that might come up

could alter the plane, morphing the intended shape into a completely different object. In doing this, I was able to

correctly identify shapes on a 3D scale, and then expanded the algorithm to compensate for multidimensional

objects and shapes.

4. Materials/Methods

As a base case, I first created a program in Java through Eclipse IDE to generate a list of points representing a

pyramid with the tip at the origin and each of the vertices located on the three axes. Java and Eclipse were used

because of my familiarity with both. Java is also platform-independent, meaning a program that was made on one

computer could be easily transferred to another. Java programs are compiled and fast so that if I needed to test with

much larger test data sets, it would be scalable. Eclipse IDE is popular and open-source, allowing it to be constantly

203

updated with the newest software. Its debugging function is user friendly and easy to use when trying to determine

what a variable holds at any given time of execution. In my program, by using the vector equation of the plane, I

found which plane was the base of the pyramid5, 6, 7, 8. With this information, I created the boundaries that were used

in the for-loops, which looped the program repeatedly until the loop’s exit condition was met. Then, by using three

nested for-loops, I generated double type points that were within the pyramid ranging from zero to a varied

maximum value, with a difference of one (Figure 1).

Figure 1. Java Code implementing the plane formula to find the coordinates of the points.

 The points being generated utilize the vector equation of the plane for the boundaries of the point generation. It

uses 3 for- loops to simulate 3D, x, y, and z plane coordinates9.

 After having a list of points generated, I wanted to simulate real data by adding random variability. The noise was

added to simulate real data because in reality, the input data would not be exact integers, instead more random

double values. The given input data would most likely be taken from a 3D software, where the data were the surface

points of an object. To do this, I found a pseudorandom value through Java’s Random class between -0.5 and 0.5.

Java’s Random class generated the pseudorandom values by finding a seed value based on the current time and

running it through a simple formula to get the new random value within the given constraints. I made this

modification to each point in the list to prevent any rounding from occurring (Figure 2). By having the list of points,

I exported the list to a new text file which could then be put into Wolfram Mathematica for visualization10.

Figure 2: Example of points after randomization occurs.

 Once I started my implementation for graphs, I took the randomized points, rounded them, and then found the

exact points, which I then graphed on Wolfram Mathematica. Some numbers shown have an E, meaning exponent.

In many cases, they are E-6, showing that the number must be multiplied by 10^-6 in order to get the actual

number.

204

 After this, I imported the list into Wolfram Mathematica, where I did my visualization. I chose Wolfram

Mathematica for data visualization due to its wide range of functionality for further analysis. I plotted each

individual point in Wolfram Mathematica to generate a 3D list plot (Figure 3). By plotting the points in Wolfram

Mathematica, the program successfully created each plane, which would have been unsuccessful if the points were

not correctly generated.

Figure 3. Graphs of points when visualized in Wolfram Mathematica in two different angles.

 The points being graphed simulated a 10 by 10 by 10 tetrahedron. This plot displayed each individual point within

a cube, and allowed the user to interactively change the orientation of the cube. I then utilized a Wolfram

Mathematica function, Mesh -> all to convert the points into solid planes for easier identification (Figure 4).

Figure 4. The planes of the points after being plotted in Wolfram Mathematica from two different angles.

205

 Each x, y and z axis is colored differently, and it is clear visually to see the figure is in fact a pyramid shape. In

addition to this, I tested to see how big of the noise I could make without breaking the program. I found that noise

values that exceeded .5 would begin to cause errors within the program because then the program would begin to

detect overlapping points, or points that did not necessarily exist.

5. Results

Only “accuracy” was tested for results. Originally, time was also going to be tested, but with the small number of

data points, there was no need for time to be tested, as the time taken to process all information was all about the

same, differing only by milliseconds. In regards to accuracy, I tested for the accuracy of the points, by checking the

points along with the actual formula of the plane, which differed from test to test (Table 1). When testing with

negative numbers, the program produced an error because Java did not like negative numbers when looking at

element positions, and as such, it returned an out of bounds exception error. To correct this, the user would have to

change the location of the origin in respect to the object being analyzed.

Table 1. Results after testing the point generating program.

 The results showed that the program was able to correctly identify the number of points that were contained within

the tetrahedron. We used these points when looking at the visualization of the tetrahedrons. The points represented

the vertices, and in the example of (1, 1, 1), the actual points being analyzed were the vertices at (0, 0, 0), (1, 0, 0),

(0, 1, 0), and (0, 0, 1). These unit points contributed to create the tetrahedron, with each vertex acting as one of the

tips of the tetrahedron. For the (5, 5, 5), there were 56 unit points that contributed to create the the entire shape of the

tetrahedron. In this case, a unit point was a point that only contained integer coordinates.

6. Conclusion

When developing the equations to find the points that would contain a pyramid, the equation was extremely

accurate, finding the correct values 100% of the time. This was checked alongside a verified program which was

able to output the number of unit points within the given vertices. When testing in the beginning, time was to be

tested alongside accuracy; however, the time differences produced from working with the data sets were so

insignificant that there was no need to test for the speed. As such, only the accuracy was tested. After plotting the

points in Wolfram Mathematica, I was able to visually verify that the points being plotted were getting the noise

taken out, thus allowing for the unit points to be plotted in their specific shape.

7. Future Directions

In the future, I plan to improve the algorithm so that given a set of data points, the algorithm will be able to return

what shape the object has. Furthermore, I plan to modularize the program so that it can be used in multi-dimensions

(3D+). One possible application can be seen with self-driving cars, allowing the car itself to get a better idea of the

environment that it is driving in as well as mapping the surrounding environment more efficiently in real time to

prevent collisions. This method could also be used in outer space, or in deep-sea exploration, where we do not have

a good idea of the terrain we are entering. Utilizing something like this would allow for better terrain-mapping for

human visualization and could become triggers for subsequent actions to take to intelligently adapt to surrounding

environment.

206

8. Acknowledgements

The author wishes to express his appreciation to Western Kentucky University for allowing him to do this research

on their campus, as well as Dr. Qi Li for being his mentor throughout this process.

9. References

1. A geometric framework for stop sign detection - IEEE Xplore Document. Accessed August 01,

2017.http://ieeexplore.ieee.org/document/7230403/.

2. Real-time recognition of U.S. speed signs - IEEE Xplore Document. Accessed August 01, 2017.

http://ieeexplore.ieee.org/document/4621282/.

3. Zhang, Zhengyou, and Olivier D. Faugeras. “Finding clusters and planes from 3D line segments with

application to 3D motion determination.” SpringerLink. May 19, 1992. Accessed August 01, 2017.

https://link.springer.com/chapter/10.1007/3-540-55426-2_26.

4. “Babies recognize real-life objects from pictures as early as nine months, psychologists discover” ScienceDaily.

Accessed August 01, 2017. https://www.sciencedaily.com/releases/2014/04/140429205733.htm

5. “Calculate distance in 3D space.” Mathematics Stack Exchange. Accessed August 01, 2017.

https://math.stackexchange.com/questions/42640/calculate-distance-in-3d-space.

6. “Cross Products.” Calculus II - Cross Product. Accessed August 01, 2017.

http://tutorial.math.lamar.edu/Classes/CalcII/CrossProduct.aspx.

7. “Equations of Planes.” Calculus III - Equations of Planes. Accessed August 01, 2017.

http://tutorial.math.lamar.edu/Classes/CalcIII/EqnsOfPlanes.aspx.

8. “Plane.” From Wolfram MathWorld. Accessed August 01, 2017. http://mathworld.wolfram.com/Plane.html.

9. “Creating a triangle with for loops.” Java - Creating a triangle with for loops - Stack Overflow. Accessed

August 01, 2017. https://stackoverflow.com/questions/11409621/creating-a-triangle-with-for-loops.

10. “How do I create a file and write to it in Java?” How do I create a file and write to it in Java? - Stack

Overflow. Accessed August 01, 2017. https://stackoverflow.com/questions/2885173/how-do-i-create-a-file-and-

write-to-it-in-java.

http://ieeexplore.ieee.org/document/7230403/
http://ieeexplore.ieee.org/document/4621282/
https://link.springer.com/chapter/10.1007/3-540-55426-2_26
https://www.sciencedaily.com/releases/2014/04/140429205733.htm
https://math.stackexchange.com/questions/42640/calculate-distance-in-3d-space
http://tutorial.math.lamar.edu/Classes/CalcII/CrossProduct.aspx
http://tutorial.math.lamar.edu/Classes/CalcIII/EqnsOfPlanes.aspx
http://mathworld.wolfram.com/Plane.html
https://stackoverflow.com/questions/2885173/how-do-i-create-a-file-and-write-to-it-in-java
https://stackoverflow.com/questions/2885173/how-do-i-create-a-file-and-write-to-it-in-java

