
Proceedings of The National Conference

On Undergraduate Research (NCUR) 2019

Kennesaw State University

Kennesaw, Georgia

April 11-13, 2019

Using a Recurrent Neural Network and Articulatory Synthesis to
Accurately Model Speech Output

Salvatore Skare

Computer Science

University of Wisconsin–La Crosse

La Crosse, WI 54601

Faculty Advisor: Allison Sauppé

Abstract

The performance of text-to-speech programs is vital to the adoption of emerging technologies such as virtual

assistants and interactive computer systems. However, current systems leave much to be desired. This research

aims to construct a text-to-speech system using articulatory synthesis and a recurrent neural network to more

accurately model human speech. Some of the aspects of speech of interest to improve upon are prosodic

components, enunciation, and pleasantness to listen to. Previously, an articulatory synthesis text-to-speech system

has not been feasible due to the complexity of such a system. A human vocal tract simulator must model the

frequency and intensity of the glottal sound wave, as well as the perturbations caused by the vocal tract and nasal

pathway. It must also model how the vocal tract changes in diameter, area and length at multiple locations. A

neural network is well suited to providing these many inputs to a speech synthesizer at a rapid rate. A recurrent

neural network is also capable of responding to context dependent prosodic and linguistic issues. In this research

two different methods of articulatory synthesis were tested with a recurrent neural network to generate the inputs.

The results show that these types of networks are capable of learning how to generate the parameters for speech.

Keywords: Machine Learning, Text-to-speech, Recurrent Neural Networks

1 Introduction

Text to speech (TTS) programs are a class of computer program that takes typed text and outputs it as spoken

words. Although programs to turn text into speech output have existed for decades, with the rising popularity of

smartphone assistants and other devices interfaced with solely via voice, TTS programs are seeing more use than

ever. However, even the best TTS programs produce robotic and choppy sounding speech that still sounds

machine-like. This can affect the way a user interacts with and perceives these programs in a negative way.

 These issues create a barrier to holding long conversations with virtual assistants and successfully conveying

long sentences and paragraphs with TTS. Creating a TTS system that can accurately transcribe text as well as being

pleasant to listen to would aid in making spoken communication from computers more user-friendly. This would

have applications such as improved in-car information and entertainment systems, personal digital assistants, smart

devices/Internet of Things, and accessibility services for the blind.

 The majority of TTS programs today use concatenative models, translating the text into individual phonemes

and trying to concatenate them in a pleasing way, which can be difficult for a computer to do. For example, context

dependent pronunciations of words like “project” provide issues for TTS systems (e.g. “working on a project”

versus “projecting one’s voice”). In recent years, this issue has been tackled using probabilistic heuristic methods

such as Hidden Markov Models, which look at previous and next words to predict the correct pronunciation. Even

more recently is the invention of Google’s WaveNet, which uses a convolutional neural network to generate audio

from phonemes at the sound wave level [1].

 The largest remaining barrier to accurate TTS programs is prosody, which is defined as “the melody, rhythm,

and emphasis of the speech at the perceptual level” [2]. In a paper from Berkeley Speech Technologies, O’Malley

explains how with traditional TTS the lack of prosody can cause the speech to sound boring, but attempts to add

more variation result in a “foolish-sounding” voice [3].

 An alternative to concatenative speech synthesis, articulatory synthesis, provides a way to mitigate some of

these issues. Lemmetty described articulately synthesis as follows:

324

Articulatory synthesis tries to model the human vocal organs as perfectly as possible, so it is

potentially the most satisfying method to produce high-quality synthetic speech. On the other hand,

it is also one of the most difficult methods to implement and the computational load is also

considerably higher than with other common methods [2].

Because of the numerous parameters that need to be updated in real-time to produce high-quality articulatory

speech synthesis, an algorithm to do so has not yet been invented.

2 Methods

In this research two methods of producing speech from models of the human vocal system were tested with a

machine learning approach, 1) a vocal synthesizer based on mathematical models of the vocal system and air flow,

and 2) a formant-based synthesizer that instead uses a series of formant functions applied to an excitation source

to produce vocalizations. Both methods were trained on single phoneme recordings and the LibriSpeech corpus

of speech data. All software written for this research and described as follows is available online1.

2.1 Vocal Synthesizer

To create the vocal synthesizer, a combination of the LF-model for glottal waves and the vocal tract model from

Story [4] was used. The LF-model simulates the pressure waves at the human glottis from a set of timing

parameters [5]. The glottal wave is created by a piecewise function, defined as follows:

g(t) = E0eαt sin (ωgt), 0 ≤ t ≤ Te (Initial phase)

 ≤ t < T ≤ T (Return phase)

g(t) = −
Ee [e−E(t−Te) − e−E(Tc−Te)], T

 e c 0

 Ta

The direct synthesis parameters, (Ee, E0, α, ω,), are derived from the timing parameters, listed in Table 1.
1https://gitlab.com/saljs/rnn-articulatory-tts

Table 1: Timing parameters from the LF-model used to generate glottal wave

Parameter Definition

T0
Tc

Ta

Te

Fundamental period

Ending of the return phase

Duration of the return phase

Instant of glottal closure

 Using the linear regression from the transformed LF-model described by Fant, Liljencrants, and Lin [6] we are

able to predict timing parameters for the LF-model from just a wave-shape parameter, Rd, and the period, T0.

From these two variables we are able to create the glottal wave portion of speech. An example of a glottal wave

generated by the synthesizer is shown in Figure 1.

325

Figure 1: Top: An example glottal wave produced by the vocal synthesizer. Bottom: An example of the glottal

wave above after being perturbed by the simulated vocal tract.

326

Figure 2: A 44 section vocal tract representation using the resting diameters given in Appendix A of Story, 2005

[4]. Each section acts as a resonator perturbing the glottal wave.

 In order to produce vocalizations, the glottal wave is perturbed by the vocal tract. This is achieved using the

parametric model described in Story, 2005. This model achieves perturbation through a series of tiers: area, length,

and nasalization [4]. Each tier describes changes to a segmented vocal tract (Figure 2) based on control parameters,

such as length change at glottis and lips, position and magnitude of constrictions, and area of nasal coupling. A

full list of inputs to the synthesizer is listed in Table 2. The glottal wave is then sampled through these segments,

treating them as a series of resonators. An example of the resulting wave is pictured in Figure 1.

Table 2. The list of parameters the synthesizer takes as inputs.

Input Definition

t
F0
Rd

q1,q2
lc

ac

rc

sc

mc

pg

lg

rg

pm

lm

rm
anp

Time to hold the sound for (seconds)

Frequency (Hz)

Glottal wave-shape

Amplitude coefficients

Location of consonant constriction

Area of consonant constriction (cm2)

Range of consonant constriction

Skewing quotient of consonant contraction

Magnitude of consonant contraction

Length change at glottal end of vocal tract (cm)

Center of the length change pg

Range of the length change pg

Length change at lips (cm)

Center of the length change pm

Range of the length change pm

Cross-sectional area of nasal coupling port (cm2)

 The combined glottal and vocal synthesizer take a set of 17 inputs (Table 2). These inputs are generated by a

recurrent neural network (RNN). The structure of this network is described in Figure 3. Each input sequence of

text to the RNN was converted into phonemes, encoded into a one-hot vector, and broken into discrete time-steps

of one phoneme each. At the final layer of the RNN, 17 outputs are generated then become the inputs to the vocal

synthesizer. The synthesizer then outputs a sound wave sampled at 16kHz of between 0 and 60 seconds in length.

During the training process, this sound wave is normalized, then compared to the training sample using a mean

squared error metric. This error term is then backpropagated through the network.

327

Phonemes

(112)

 LSTM

network

(50)

Dense

network

(17)

Vocal

Synthesizer

Sound wave

(0-960000)

Figure 3: The recurrent neural network used for the vocal synthesizer. Blocks represent multiple layers and ovals

represent single layers/operations. The output size at each level is listed in parenthesis.

2.2 Formant Synthesizer

The formant synthesizer, like the vocal synthesizer, has two main components: a source excitation and a series of

perturbations caused by the vocal tract. Unlike the vocal synthesizer, instead of applying perturbations by keeping

track of the state of a vocal tract, a series of formant functions are applied. The benefit of this synthesis method is

that it is computationally much faster than the previous synthesizer. Using linear predictive coding, the excitation

and formant functions can be extracted from a recorded speech sample. The Speech Signal Processing Toolkit

software package was used in this research for this process [7]. This means that instead of creating an end-to-end

trainable model, a RNN can be trained to generate these two sequences without having to generate a final sound

wave in order to calculate an error value for backpropagation. This drastically reduces the time needed to train the

model.

Dense

network

(200)

328

Figure 4: An example of the utterance “Hello world” split into excitation (top) and formant functions (bottom).

 Inputs are provided to the formant synthesizer RNN in the same way as with the vocal synthesizer. The input

layer then feeds to two separate recurrent networks made up of LSTM cells. The output from these layers are then

fed to deconvolutional layers [8], which serve to identify and extrapolate patterns into output sequences. The

excitation output is one dimensional, but the number of formant functions depends on the selected order (in this

research an order of 25 was used), so the deconvolutional layers that create the formant functions are two

dimensional, with a number of filters equal to the order plus one for the fundamental formant frequency. Only ten

seconds of data were produced by this network to reduce computational complexity. The complete network is

described in Figure 5.

329

Phonemes

(112)

 Deconv

network

(160000)

 Deconv

network

(1988x26)

Source

excitation

Formant

functions

Figure 5: The recurrent neural network used for the formant synthesizer. Blocks represent multiple layers. The

output size at each level is listed in parenthesis.

3 Results

When trained on the single phoneme data set, both synthesizers were able to achieve accuracy’s of > 95% com-

pared to source recordings. The formant synthesizer exhibits a better learning curve, while the vocal synthesizer

takes longer to reach 95% accuracy and oscillates more (Figure 6).

 The formant synthesizer outperforms the vocal synthesizer when trained on the LibriSpeech corpus. The

vocal synthesizer was unable to converge to a high level of accuracy, averaging only about 70%, while the format

synthesizer converged to > 99% accuracy.

Figure 6: Accuracy of both synthesizers when trained on single phoneme data over time. The data points are

connected on the formant synthesizer plot to better show the trend over time.

LSTM

(256)

LSTM

(256)

330

 The reason the formant synthesizer outperforms the vocal synthesizer likely has to do with how error is

backpropagated though the network. To speed up the synthesis of sound waves with the vocal synthesizer, a buffer

of 256 samples is returned for every set of inputs. This makes estimating partial derivatives for each input

parameter impossible, so the error is backpropagated inaccurately. Another version of the synthesizer that

produced one sample at a time was developed and tested, but ended up being prohibitively slow. The formant

synthesizer, using a non-end-to-end trainable network, didn’t suffer from this issue and was able to learn to produce

speech parameters more effectively.

4 Discussion

One of the main limitations of this research was that only a limited number of RNN configurations were evaluated.

Future research could attempt to improve these results with other network configurations. Additionally, using

generative neural networks, such as a generative adversarial network would be another avenue to pursue further

[9].

 In a full TTS system using the formant synthesizer described, the generated excitation and formant functions

would need to be synthesized into a vocal wave. The number of formant functions used in this research is the

minimum needed to produce high quality speech. A full TTS system might also increase this number.

 The results of this research demonstrate that recurrent neural networks are capable of generating parameters to

be used in articulatory speech synthesis. A high-quality articulatory synthesis TTS system would have wide

ranging benefits in numerous applications and would serve to create more user-friendly voice interfaces.

5 Acknowledgments

I would like to acknowledge my faculty mentor, Dr. Allison Sauppé, who has helped me at every step of this

research. In addition I would like to thank Dr. Martin Allen who provided valuable insight and instruction into the

inner workings and applications of neural networks. This research would not have been possible without generous

funding from the Dean’s Distinguished Fellow’s grant from the University of Wisconsin La Crosse College of

Science and Health. Lastly, I would like to thank the University of Wisconsin–La Crosse Computer Science

Department for providing the equipment necessary to perform this research.

6. References

[1] Aaron van den Oord, Sander Dieleman, Sander Dieleman, et al. WaveNet: A Generative Model for Raw

Audio. Tech. rep. Google DeepMind, London, UK, 2016.

[2] Sami Lemmetty. “Review of Speech Synthesis Technology”. MA thesis. Helinski University of Technology,

1999. URL: http://research.spa.aalto.fi/publications/theses/lemmetty_mst/.

[3] M. H. O’Malley. “Text-to-speech conversion technology”. In: Computer 23.8 (1990), pp. 17–23. ISSN: 0018-

9162. DOI: 10.1109/2.56867.

[4] Brad H. Story. “A parametric model of the vocal tract area function for vowel and consonant simulation”.

In: The Journal of the Acoustical Society of America 117 (Jan. 2005), pp. 3231–3254. DOI: 10.1121/1.

1869752.

[5] G Fant, J Liljencrants, and Qiguang Lin. “A Four-Parameter Model of Glottal Flow”. In: STL-QPSR 4 (Jan.

1985).

[6] G Fant, J Liljencrants, and Qiguang Lin. “The LF-model revisited. Transformations and frequency domain

analysis”. In: KTH, Speech Transmission Laboratory, Quarterly Report 2-3 (Jan. 1995), pp. 119–156.

[7] Satoshi Imai, Takao Kobayashi, and Keiichi Tokuda. Speech Signal Processing Toolkit (SPTK). http :

//sp-tk.sourceforge.net/.

[8] M. D. Zeiler, D. Krishnan, G. W. Taylor, et al. “Deconvolutional networks”. In: 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. June 2010, pp. 2528–2535. DOI: 10.1109 /

CVPR.2010.5539957.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. “Generative adversarial nets”. In: Advances in

neural information processing systems. 2014, pp. 2672–2680.

http://research.spa.aalto.fi/publications/theses/lemmetty_mst/

