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Abstract 

 
The performance of text-to-speech programs is vital to the adoption of emerging technologies such as virtual 

assistants and interactive computer systems. However, current systems leave much to be desired. This research 

aims to construct a text-to-speech system using articulatory synthesis and a recurrent neural network to more 

accurately model human speech. Some of the aspects of speech of interest to improve upon are prosodic 

components, enunciation, and pleasantness to listen to. Previously, an articulatory synthesis text-to-speech system 

has not been feasible due to the complexity of such a system. A human vocal tract simulator must model the 

frequency and intensity of the glottal sound wave, as well as the perturbations caused by the vocal tract and nasal 

pathway. It must also model how the vocal tract changes in diameter, area and length at multiple locations. A 

neural network is well suited to providing these many inputs to a speech synthesizer at a rapid rate. A recurrent 

neural network is also capable of responding to context dependent prosodic and linguistic issues. In this research 

two different methods of articulatory synthesis were tested with a recurrent neural network to generate the inputs. 

The results show that these types of networks are capable of learning how to generate the parameters for speech. 
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1 Introduction 

 
Text to speech (TTS) programs are a class of computer program that takes typed text and outputs it as spoken 

words. Although programs to turn text into speech output have existed for decades, with the rising popularity of 

smartphone assistants and other devices interfaced with solely via voice, TTS programs are seeing more use than 

ever. However, even the best TTS programs produce robotic and choppy sounding speech that still sounds 

machine-like. This can affect the way a user interacts with and perceives these programs in a negative way. 

   These issues create a barrier to holding long conversations with virtual assistants and successfully conveying 

long sentences and paragraphs with TTS. Creating a TTS system that can accurately transcribe text as well as being 

pleasant to listen to would aid in making spoken communication from computers more user-friendly. This would 

have applications such as improved in-car information and entertainment systems, personal digital assistants, smart 

devices/Internet of Things, and accessibility services for the blind. 

   The majority of TTS programs today use concatenative models, translating the text into individual phonemes 

and trying to concatenate them in a pleasing way, which can be difficult for a computer to do. For example, context 

dependent pronunciations of words like “project” provide issues for TTS systems (e.g. “working on a project” 

versus “projecting one’s voice”). In recent years, this issue has been tackled using probabilistic heuristic methods 

such as Hidden Markov Models, which look at previous and next words to predict the correct pronunciation. Even 

more recently is the invention of Google’s WaveNet, which uses a convolutional neural network to generate audio 

from phonemes at the sound wave level [1]. 

   The largest remaining barrier to accurate TTS programs is prosody, which is defined as “the melody, rhythm, 

and emphasis of the speech at the perceptual level” [2]. In a paper from Berkeley Speech Technologies, O’Malley 

explains how with traditional TTS the lack of prosody can cause the speech to sound boring, but attempts to add 

more variation result in a “foolish-sounding” voice [3]. 

   An alternative to concatenative speech synthesis, articulatory synthesis, provides a way to mitigate some of 

these issues. Lemmetty described articulately synthesis as follows: 
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Articulatory synthesis tries to model the human vocal organs as perfectly as possible, so it is 

potentially the most satisfying method to produce high-quality synthetic speech. On the other hand, 

it is also one of the most difficult methods to implement and the computational load is also 

considerably higher than with other common methods [2]. 

 

Because of the numerous parameters that need to be updated in real-time to produce high-quality articulatory 

speech synthesis, an algorithm to do so has not yet been invented. 

 

 

2 Methods 

 
In this research two methods of producing speech from models of the human vocal system were tested with a 

machine learning approach, 1) a vocal synthesizer based on mathematical models of the vocal system and air flow, 

and 2) a formant-based synthesizer that instead uses a series of formant functions applied to an excitation source 

to produce vocalizations. Both methods were trained on single phoneme recordings and the LibriSpeech corpus 

of speech data. All software written for this research and described as follows is available online1. 

 

2.1 Vocal Synthesizer 

 
To create the vocal synthesizer, a combination of the LF-model for glottal waves and the vocal tract model from 

Story [4] was used. The LF-model simulates the pressure waves at the human glottis from a set of timing 

parameters [5]. The glottal wave is created by a piecewise function, defined as follows: 

 

g(t) = E0eαt sin (ωgt), 0 ≤ t ≤ Te (Initial phase) 

             ≤ t < T ≤ T     (Return phase) 

g(t) = − 
Ee  [e−E(t−Te ) − e−E(Tc−Te )], T 

     
      e c 0 

     Ta 

The direct synthesis parameters, (Ee, E0, α, ω, ), are derived from the timing parameters, listed in Table 1. 
1https://gitlab.com/saljs/rnn-articulatory-tts 

 

Table 1: Timing parameters from the LF-model used to generate glottal wave 

 
Parameter Definition 

T0 
Tc 

Ta 

Te 

Fundamental period 

Ending of the return phase 

Duration of the return phase 

Instant of glottal closure 
 

   Using the linear regression from the transformed LF-model described by Fant, Liljencrants, and Lin [6] we are 

able to predict timing parameters for the LF-model from just a wave-shape parameter, Rd, and the period, T0. 

From these two variables we are able to create the glottal wave portion of speech. An example of a glottal wave 

generated by the synthesizer is shown in Figure 1. 
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Figure 1: Top: An example glottal wave produced by the vocal synthesizer. Bottom: An example of the glottal 

wave above after being perturbed by the simulated vocal tract. 
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Figure 2: A 44 section vocal tract representation using the resting diameters given in Appendix A of Story, 2005 

[4]. Each section acts as a resonator perturbing the glottal wave. 

 
  In order to produce vocalizations, the glottal wave is perturbed by the vocal tract.  This is achieved using the 

parametric model described in Story, 2005. This model achieves perturbation through a series of tiers: area, length, 

and nasalization [4]. Each tier describes changes to a segmented vocal tract (Figure 2) based on control parameters, 

such as length change at glottis and lips, position and magnitude of constrictions, and area of nasal coupling. A 

full list of inputs to the synthesizer is listed in Table 2. The glottal wave is then sampled through these segments, 

treating them as a series of resonators. An example of the resulting wave is pictured in Figure 1. 

 

Table 2. The list of parameters the synthesizer takes as inputs. 

 
Input Definition 

t 
F0 
Rd 

q1,q2 
lc 

ac 

rc 

sc 

mc 

pg 

lg 

rg 

pm 

lm 

rm 
anp 

Time to hold the sound for (seconds) 

Frequency (Hz) 

Glottal wave-shape 

Amplitude coefficients 

Location of consonant constriction 

Area of consonant constriction (cm2) 

Range of consonant constriction 

Skewing quotient of consonant contraction 

Magnitude of consonant contraction 

Length change at glottal end of vocal tract (cm) 

Center of the length change pg 

Range of the length change pg 

Length change at lips (cm) 

Center of the length change pm 

Range of the length change pm 

Cross-sectional area of nasal coupling port (cm2) 

 

   The combined glottal and vocal synthesizer take a set of 17 inputs (Table 2). These inputs are generated by a 

recurrent neural network (RNN). The structure of this network is described in Figure 3. Each input sequence of 

text to the RNN was converted into phonemes, encoded into a one-hot vector, and broken into discrete time-steps 

of one phoneme each. At the final layer of the RNN, 17 outputs are generated then become the inputs to the vocal 

synthesizer. The synthesizer then outputs a sound wave sampled at 16kHz of between 0 and 60 seconds in length. 

During the training process, this sound wave is normalized, then compared to the training sample using a mean 

squared error metric. This error term is then backpropagated through the network. 
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Figure 3: The recurrent neural network used for the vocal synthesizer. Blocks represent multiple layers and ovals 

represent single layers/operations. The output size at each level is listed in parenthesis. 

 
2.2 Formant Synthesizer 

The formant synthesizer, like the vocal synthesizer, has two main components: a source excitation and a series of 

perturbations caused by the vocal tract. Unlike the vocal synthesizer, instead of applying perturbations by keeping 

track of the state of a vocal tract, a series of formant functions are applied. The benefit of this synthesis method is 

that it is computationally much faster than the previous synthesizer. Using linear predictive coding, the excitation 

and formant functions can be extracted from a recorded speech sample. The Speech Signal Processing Toolkit 

software package was used in this research for this process [7]. This means that instead of creating an end-to-end 

trainable model, a RNN can be trained to generate these two sequences without having to generate a final sound 

wave in order to calculate an error value for backpropagation. This drastically reduces the time needed to train the 

model. 

 

 

 
Dense 

network 

(200) 
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Figure 4: An example of the utterance “Hello world” split into excitation (top) and formant functions (bottom). 

 

   Inputs are provided to the formant synthesizer RNN in the same way as with the vocal synthesizer. The input 

layer then feeds to two separate recurrent networks made up of LSTM cells. The output from these layers are then 

fed to deconvolutional layers [8], which serve to identify and extrapolate patterns into output sequences. The 

excitation output is one dimensional, but the number of formant functions depends on the selected order (in this 

research an order of 25 was used), so the deconvolutional layers that create the formant functions are two 

dimensional, with a number of filters equal to the order plus one for the fundamental formant frequency. Only ten 

seconds of data were produced by this network to reduce computational complexity. The complete network is 

described in Figure 5. 
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Figure 5: The recurrent neural network used for the formant synthesizer. Blocks represent multiple layers. The 

output size at each level is listed in parenthesis. 

 

 

3 Results 

 
When trained on the single phoneme data set, both synthesizers were able to achieve accuracy’s of > 95% com- 

pared to source recordings. The formant synthesizer exhibits a better learning curve, while the vocal synthesizer 

takes longer to reach 95% accuracy and oscillates more (Figure 6). 

   The formant synthesizer outperforms the vocal synthesizer when trained on the LibriSpeech corpus. The 

vocal synthesizer was unable to converge to a high level of accuracy, averaging only about 70%, while the format 

synthesizer converged to > 99% accuracy. 

 
 

 

Figure 6: Accuracy of both synthesizers when trained on single phoneme data over time. The data points are 

connected on the formant synthesizer plot to better show the trend over time. 

  
LSTM 
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LSTM 
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   The reason the formant synthesizer outperforms the vocal synthesizer likely has to do with how error is 

backpropagated though the network. To speed up the synthesis of sound waves with the vocal synthesizer, a buffer 

of 256 samples is returned for every set of inputs.  This makes estimating partial derivatives for each input 

parameter impossible, so the error is backpropagated inaccurately. Another version of the synthesizer that 

produced one sample at a time was developed and tested, but ended up being prohibitively slow. The formant 

synthesizer, using a non-end-to-end trainable network, didn’t suffer from this issue and was able to learn to produce 

speech parameters more effectively. 

 

 

4 Discussion 

 
One of the main limitations of this research was that only a limited number of RNN configurations were evaluated. 

Future research could attempt to improve these results with other network configurations. Additionally, using 

generative neural networks, such as a generative adversarial network would be another avenue to pursue further 

[9]. 

   In a full TTS system using the formant synthesizer described, the generated excitation and formant functions 

would need to be synthesized into a vocal wave. The number of formant functions used in this research is the 

minimum needed to produce high quality speech. A full TTS system might also increase this number. 

   The results of this research demonstrate that recurrent neural networks are capable of generating parameters to 

be used in articulatory speech synthesis. A high-quality articulatory synthesis TTS system would have wide 

ranging benefits in numerous applications and would serve to create more user-friendly voice interfaces. 
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